Policy P350.03 – Setback of garages and carports, garage width, design of car parking spaces and vehicle access

<table>
<thead>
<tr>
<th>Responsible Business Unit/s</th>
<th>Development Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Officer</td>
<td>Manager Development Services</td>
</tr>
<tr>
<td>Affected Business Unit/s</td>
<td>Development Services</td>
</tr>
</tbody>
</table>

### Policy objectives

The objectives of this policy are as follows:

1. To provide for parking and associated structures in a manner that contributes positively to the streetscape and is compatible with dwelling design and materials.

2. To have regard for the safety and welfare of pedestrians on public footpaths and other road users when designing vehicle access and parking.

### Policy status

This policy is made pursuant to Part 2 (Division 2) of the Deemed Provisions of the *Planning and Development (Local Planning Schemes) Regulation 2015* (the Regulations). Under clause 3(2) of the Regulations (Part 2), the City may make a local planning scheme based on sound town planning principles to address a strategic or operational consideration. This policy provides deemed-to-comply criteria and additional design principles for the assessment of planning applications involving the development of garages and carports as well as the design of car parking spaces. Clause 7.3 of the R-Codes prescribes the design elements in which the City can provide alternative deemed-to-comply criteria, or augmented and additional design principles.

### Policy application

This policy applies in addition to the deemed-to-comply criteria listed in clause 5.2.1 (setback of garages and carports) which are to be used in conjunction with the Scheme and any other relevant council policies relating to residential development. This policy also provides matters for consideration in the application of the relevant design principles under Design Elements 5.2.2 (Garage width), 5.3.4 & 6.3.4 (Design of car parking spaces) and 5.3.5 & 6.3.5 (Vehicle access) of the R-Codes. The Policy is to be read and applied in conjunction with these elements of the R-Codes.

The policy also provides additional criteria relating to the design and assessment of mechanical vehicle parking equipment (car stackers) where proposed to dwellings. The criteria do not augment the R-Codes and shall apply to all residential proposals involving the use of mechanical vehicle parking equipment.
Policy statement

1.0 Deemed-to-comply proposals

The deemed-to-comply criteria of Design Element 5.2.1 (C1.2) (Setbacks of garages and carports) are replaced with the following:

1.1 Setbacks of Carports

1.1.1 Carports setback from the street and/or right-of-way boundary in accordance with the following:

(a) 4.5 metres from primary streets; or

(b) A minimum of 1.5 metres from the primary street in the following circumstances:

   (i) where a carport is proposed to be added to an existing dwelling, and there is no practical location for the carport behind a 4.5 metre setback from the street boundary; or
   (ii) the focus area is characterised by at least one-third of the lots already having carports in the front setback area;

(c) 0.5 metres for the roof eaves, where the carport is setback no more than 1.5 metres from the street boundary.

1.2 Additional deemed-to-comply criteria under Design Element 5.2.1 (Setback of garages and carports)

The following additional deemed-to-comply criteria apply to Design Element 5.2.1 (Setbacks of garages and carports) of the R-Codes:

1.2.1 Where a garage or carport is proposed to be located wholly or partly within a street setback area, or to the side of a dwelling and visible from the street, the design, materials and colours are to be complementary to those of the dwelling/building to which the garage or carport is appurtenant.

1.2.2 Where a carport is proposed to be setback less than 1.5 metres from the street boundary, the dimension of the columns shall not exceed 360mm x 360mm.

2.0 Proposals assessed against the design principles

Where a development proposal does not meet the deemed-to-comply criteria of this policy or the R-Codes, the proposal is to be assessed against the design principles of the relevant design element of the R-Codes. This policy does not modify the design principles, however the following matters will be considered in the determination of proposals that apply the design principles of Design Elements 5.2.2, 5.3.4 & 6.3.4 and 5.3.5 & 6.3.5.

2.1 Proposals subject to Design Element 5.2.2 (Garage width)

Garages shall be designed to minimise the impact on the streetscape. Garages proposing triple-width openings to the street will generally have an excessively dominant visual impact on the street and will not be supported.

2.2 Proposals subject to Design Elements 5.3.4 & 6.3.4 (Design of car parking spaces)

Visitor parking bays may be located inside a security barrier where the location would better serve visitors convenience. Where visitor bays are situated inside a security barrier:

(a) visitors shall have convenient access outside the security barrier to an electronic communication system linked to each dwelling;
(b) a dedicated embayed standing area shall be provided exclusively for use in conjunction with the electronic communications system;

(c) the electronic communications system embayment shall be located wholly on the development site in a position where it will not obstruct any street; and

(d) at least two visitors’ bays are to be provided outside the security barrier in the case of Multiple Dwellings, and one bay for Grouped Dwellings.

2.3 Proposals subject to Design Elements 5.3.5 & 6.3.5 (Vehicle access)

Where the development site adjoins a right-of-way, the City may approve residential development relying on vehicular access from the primary street, subject to:

(a) There being only one crossover from the street; and

(b) In the case of a site 12.0 metres wide or less, the crossover being not wider than 4.0 metres.

3.0 Matters to be considered when assessing proposals involving mechanical parking devices (car stackers)

3.1 Where a car stacking system is proposed, the minimum internal dimensions of associated car parking bays are to be 2.1 metres in height, 5.5 metres in length, 2.5 metres in width, and having a minimum weight bearing capacity of 2,600 kilograms.

3.2 A minimum of 20% of the total onsite car parking bays provided shall be provided on hardstand material and shall not require, rely or be assisted by mechanical stacking equipment for access at any time.

3.3 Mechanical parking devices shall not be used for the provision of a visitor bays forming part of a development and shall be maintained as operational for the life of the building, including in the event of a power failure. The City will apply conditions of development approval to all development applications involving mechanical parking devices to ensure:

(a) Ongoing compliance with operational specifications is achieved as outlined in a Parking Management Plan.

(b) Owners and prospective purchasers are aware of their obligations with respect to the use of mechanical parking devices.

Legislation/Local Law requirements
City of South Perth Health Local Laws 2002
Town Planning Scheme No. 6
Building Code of Australia

Other relevant policies/key documents
City of South Perth Planning Policies
Guidelines for design of parking spaces, access to development sites, crossovers and driveway gradients

The following information provides guidelines for the design of parking spaces, access to development sites, provision of crossovers and the design of driveway gradients. The statements are provided for guidance only and do not form part of the criteria of this policy. The City may use this guidance when determining planning proposals. In particular guidance relating to vehicle crossovers will assist in determining whether a development application proposes suitable access to a site across the public road verge.

A. Formed Driveway Dimensions to Enable Vehicles to Enter the Street in Forward Gear

Figures 1 to 6 further in this section depict six different parking bay layouts and manoeuvre arrangements. These diagrams illustrate layouts that are designed to facilitate single forward and reverse movements into and from the parking bay and are based on the B85 design vehicle referred to in Australian Standard AS2890.1. However, it is recognised that other layouts can also be functional.

When vehicles are required to enter the street in forward gear, the driveway and other vehicle accessways shall be a sufficient size to comply with one of the following:

(a) The layout is to comply with one of the parking bay and manoeuvre arrangements depicted in Figures 1 to 6; or

(b) Applicants are to demonstrate that their proposal is functional by means of diagrams showing the swept paths of a vehicle. The vehicle is to be able to enter or leave the site in a forward gear without relying on any other parking bay to facilitate such movements. The positioning and dimensions of the parking bays and access ways are to be designed to demonstrate compliance with all of the following requirements:

(i) the swept paths are to be derived from Australian Standard AS2890.1 or another authoritative source which is to be identified on the diagrams;

(ii) the design vehicle is to be the B85 vehicle defined in Australian Standard AS2890.1 as: “The design motor car whose physical dimensions represent the 85th percentile class of all cars and light vans on the road.” (Refer to Appendix B of AS2890.1 for data and diagrams relating to the B85 vehicle); and

(iii) the entry and exit manoeuvres are to be designed to facilitate single forward and reverse movements into and from the parking bay.

B. Vehicle crossovers

1. Crossovers and development design to retain street trees

The City normally expects existing street trees to remain undisturbed by new developments. All new crossovers are to meet the following requirements:

(a) Driveways and vehicle crossovers shall be setback a minimum distance of 3.0 metres from a street tree, measured from the centre of the tree trunk, unless the City Environment department permits a lesser distance or the removal of the tree.

(b) If a development proposal indicates the removal of a street tree to accommodate a vehicle crossover and formed driveway, but the City requires the tree to be retained, where relocation of the crossover causes access difficulties, modifications to the site plan or building design or both, will be required.

2. Crossover design and associated remedial works

All new crossovers are to meet the following requirements:
(a) All crossovers are to be designed and constructed in accordance with the City's related specifications and guidelines included in Council Management Practice M353 Crossing (Crossover) Construction;

(b) The required vehicle crossover may be either newly constructed or an existing crossover widened to the required minimum width; and

(c) Where a proposed new or extended crossover would interfere with any existing services maintained by the City, a service authority or private company, the applicant is to arrange for the relocation of the affected infrastructure. Prior to the City issuing a building permit, the applicant is to submit the affected service provider’s written agreement to the intended relocation of the infrastructure. All relocation costs are to be met by the applicant.

3. Removal of redundant crossovers

The site plan for any proposed residential development is to show the intended removal of any redundant crossover and the reinstatement of the verge and kerbing. These remedial works are to be completed at the applicant’s cost prior to occupation of any dwelling.

C. Formed Driveway Gradient

1. Verge levels not to be modified

The City will not approve alterations to verge levels for any new, rebuilt or modified crossover, to prevent difficulties for pedestrian movement along the road verge or footpath, unless this proves necessary due to design complications caused by topography.

2. Indemnity for Steep Gradients

Where topography creates difficulties in adhering to the maximum gradients permitted by Town Planning Scheme No. 6 clause 6.10(2) (1:12 within 3.6 metres of the street alignment and 1:8 for the remainder of the driveway), the City may allow a steeper gradient subject to the applicant complying with the following:

(a) Where the driveway gradient at any point is steeper than the maximum prescribed in Town Planning Scheme No.6 clause 6.10(2) but not steeper than 1:6, the applicant is to submit a letter which acknowledges responsibility for any access difficulties that may arise, without any future recourse to the City of South Perth.

(b) Where the driveway gradient at any point is steeper than 1:6 but not steeper than 1:4, the applicant is to submit:

(i) a letter which acknowledges responsibility for any access difficulties that may arise, without any future recourse to the City of South Perth; and

(ii) certification from a consulting traffic engineer or architect that the design of the vehicular access from the street to all parking bays complies with the provisions of Australian/New Zealand Standard AS/NZ 2890.1 (as amended) - Parking Facilities. The consulting engineer or architect is to also certify the actual finished driveway gradient, which in no case is to be steeper than 1:4.

The required letter and certification are to be provided prior to the issuing of a building permit.

(c) Approval will not be granted for any driveway with a gradient steeper than 1:4.

D. Streets considered to be primary distributor or integrator arterial roads for the purpose of Design Element 5.3.5 of the R-Codes
The following streets/roads are considered to be primary distributor or integrator arterial roads for the purpose of Design Element 5.3.5 of the R-Codes:

- Canning Highway;
- Manning Road
- Kent Street
- Mill Point Road (between Labouchere Road and Way Road);
- Way Road;
- Labouchere Road (between Mill Point Road and Thelma Street);
- Douglas Avenue;
- Hayman Road;
- South Terrace;
- George Street;
- Murray Street (between South Terrace and Thelma Street);
- Thelma Street (between Labouchere Road and Canning Highway)

E. **Identified high frequency public transport routes**

![Map showing high frequency public transport routes](image)

Legend:
- **Red**: High frequency bus route (in direction of arrow)
- **Orange**: PM (High frequency bus route (in direction of arrow))
- **Orange Circle**: High frequency rail station
NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.
NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.
NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.
Figure 4
Parking Bay Manoeuvre 90° Double - 6.5 Metre Reverse

NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.
NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.
Figure 6
Parking Bay Manoeuvre 180° Double

NOTES:
1. Not to scale.
2. All measurements are in metres.
3. Based on no wall, column, pier or fence being within 0.3 metres of the sides of the car bay.
4. Nominated shape and dimensions of reversing area rely on formed driveway being set back 0.5 metres from boundary fence.
5. Based on the B85 design vehicle referred to in Australian Standard AS 2890.1.
6. Designed to facilitate single forward and reverse movements into and from the parking bay.