

Perth (Head Office) 12 Monger Street Perth WA 6000

T +61 (0)8 9227 9355 F +61 (0)8 9227 5033

www.syrinx.net.au ABN: 39 092 638 410

Salter Point

LAGOON STUDY

July 2018 For City of South Perth

Document Control

Report	17102RPT001			
Version	Date	Prepared by	Approved	Issue Details
1	26.07.18	BW, MH, RT, VC, LU, MB	KM	Final

Limitations of Report

Syrinx Environmental PL has prepared this report as a professional consultant. No other warranty, expressed or implied, is made as to the professional advice included in this report. This report has not been prepared for the use, perusal or otherwise, by parties other than the Client, the Owner and their nominated consulting advisors without the consent of the Owner. No further information can be added without the consent of the Owner, nor does the report contain sufficient information for purposes of other parties or for other uses. The information contained in this report has been prepared in good faith, and accuracy of data at date of issue has been compiled to the best of our knowledge. However, Syrinx Environmental PL is not responsible for changes in conditions that may affect or alter information contained in this report before, during or after the date of issue.

Syrinx Environmental PL accepts site conditions as an indeterminable factor, creating variations that can never be fully defined by investigation. Measurements and values obtained from sampling and testing are indicative within a limited time frame and unless otherwise specified, should not be accepted as actual realities of conditions on site beyond that time frame.

© 2018 Syrinx Environmental PL

Except as provided by the Copyright Act 1968, no part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior written permission of Syrinx Environmental PL. Enquiries should be directed to the Corporate Intellectual Property Officer.

TABLE OF CONTENT

PAR	T 1: INTRODUCTION	1
1.0	PROJECT BACKGROUND	1
2.0	PROJECT OBJECTIVES AND TASKS	1
3.0	SITE CONTEXT	3
3.1	LOCATION AND SURROUNDING LAND USE	3
3.2	LOCATION WITHIN SWAN-CANNING ESTUARY	3
3.3	LAGOON MORPHOLOGY	3
3.4	GEOLOGY AND SOILS	3
3.5	WATER FLOWS	4
3.5.1	Tidal Flows	4
3.5.2	Groundwater Flows	4
3.5.3		4
3.6	PHYTOPLANKTON AND MACROALGAL BLOOMS	8
3.7	COMMUNITY AND ENVIRONMENTAL VALUES	8
PAR	T 2: METHODOLOGY	10
4.0	DESKTOP REVIEW	10
5.0	SURVEY OF THE LAGOON BATHYMETRY AND SURROUNDS	10
5.1	LEVEL AND FEATURE SURVEY	10
5.2	SURVEY OF MONITORING POINTS AFTER INSTALLATION	11
6.0	LAGOON HYDROLOGY ASSESSMENT	11
6.1	TIDAL INTERACTIONS ASSESSMENT	11
6.1.1	Surface Water Levels	11
6.1.2	Surface Elevation Changes Along the Channel	13
6.1.3	Calculation of Tidal Prism	13
6.2	GROUNDWATER INPUT AND OUTPUT ASSESSMENT	13
6.3	STORMWATER FLOWS MEASUREMENT	15
6.4	WATER BALANCE AND FLUSHING TIME ASSESSMENT	15
7.0	WATER QUALITY SAMPLING METHODOLOGY	15
7.1	SURFACE WATER SAMPLING METHODOLOGY	16
7.2	GROUNDWATER SAMPLING METHODOLOGY	16
7.3	STORMWATER SAMPLING METHODOLOGY	16
8.0	SEDIMENT QUALITY SAMPLING	17
9.0	LAGOON VEGETATION CONDITION ASSESSMENT	17

11.0 DIEBACK MANAGEMENT	18
	10
12.0 OPERATIONAL HEALTH & SAFETY (OHS)	18
13.0 STAKEHOLDER CONSULTATION	18
PART 3: RESULTS AND DISCUSSION	19
14.0 REVIEW OF HISTORICAL WATER LEVEL, WATER QUALITY AND METEOR DATA 19	ROLOGICAL
15.0 LAGOON FEATURE AND LEVEL SURVEY	23
16.0LAGOON HYDROLOGY16.1TIDAL INTERACTIONS16.1.1Surface Elevation Changes Along the Channel16.1.2Surface Water Levels16.1.3Tidal Prism16.2GROUNDWATER INPUT AND OUTPUT16.3STORMWATER FLOWS16.4WATER BALANCE AND FLUSHING TIME	24 24 25 27 28 31 31
 17.0 WATER QUALITY 17.1 SURFACE WATER QUALITY 17.1.1 Physico-chemical measurements 17.1.2 Nutrients 17.1.3 Metals and metalloids 17.1.4 Surface water summary 17.2 GROUNDWATER QUALITY 17.2.1 Physico-chemical measurements 17.2.2 Nutrients 17.2.3 Metals and metalloids 17.4 Groundwater summary 17.3 STORMWATER QUALITY 17.3.1 Physico-chemical parameters 17.3.2 Nutrients 17.3.3 Metals and metalloids 17.3.4 Stormwater summary 	 33 33 33 33 33 38 <
 18.0 SEDIMENT QUALITY 18.1 PHYSICO-CHEMICAL PARAMETERS 18.2 METAL AND METALLOIDS 18.3 NUTRIENTS 18.4 SEDIMENT SUMMARY 	45 45 45 47 47

19.0	PRIMARY PRODUCTION	47
19.1	BENTHIC ALGAE	47
19.2	PHYTOPLANKTON	50
19.3	SUMMARY OF PRIMARY PRODUCTION	53
20.0	LAGOON VEGETATION CONDITION	53
21.0	FAUNA	57
21.1	INVERTEBRATES	57
21.2	FISH	57
21.3	FROGS	58
21.4	REPTILES	58
21.5	BIRDS	59
21.6	MAMMALS	62
PAR	T 4: KEY FINDINGS AND MANAGEMENT RECOMMENDATIONS	63
22.0	SUMMARY OF KEY FINDINGS	63
22.1	LAGOON MORPHOMETRY AND PROCESSES	63
22.2	WATER AND SEDIMENT QUALITY	63
22.3	PRIMARY PRODUCTION	64
22.4	LAGOON VEGETATION	64
22.5	FAUNA	64
23.0	RECOMMENDATIONS	65
23.1	IMPROVING FLUSHING OF THE LAGOON	65
23.1.1	Short Term Actions	65
23.1.2	Long Term Actions	66
23.2	MECHANICAL REMOVAL OF FLOATING ALGAL MATS	68
23.3	NUTRIENT AND POLLUTANT SOURCE MANAGEMENT	68
	Short Term Actions	68
	Long Term Actions	68
23.4	SEDIMENT MANAGEMENT	68
23.5	HABITAT MANAGEMENT	69
REFI	ERENCES	70
APP	ENDICES	73

LIST OF TABLES

Table 1. Groundwater Well Coordinates	14
Table 2. Water quality sampling schedule	15
Table 3. Lagoon dimensions	24
Table 4. Channel elevation at survey stakes (mAHD).	24
Table 5. Minimum channel elevation for Profile Line 2	25
Table 6 Tidal prism for two scenarios	27
Table 7. Estimates of groundwater inputs into the Lagoon	32
Table 8. Estimates of Lagoon flushing time	32
Table 9. Surface water quality data. Orange highlights relate to exceedances of ANZECC (2000) trigge	er values 35
Table 10. Groundwater quality data. Orange highlights relate to exceedances of ANZECC (2000) trigge	r values 39
Table 11. Stormwater quality data. Orange highlights relate to exceedances of ANZECC (2000) trigge	r values 44
Table 12. Sediment quality data. Orange and red highlights relate to exceedances of ANZECC (20 DER (2015) trigger values respectively	00) and 46
Table 13. Phytoplankton from Salter Point Lagoon sampling sites (March to May 2018). Enume cells/mL.	rated in 51

LIST OF FIGURES

Figure 1. Aerial imagery showing the extent of the mat coverage at Salter Point Lagoon from Janua April 2018	ary 2016 to 2
Figure 2. Location of Salter Point Lagoon. Insert A shows the location of the Lagoon within the Swa Estuary.	n-Canning 5
Figure 3. Morphology of Salter Point Lagoon	6
Figure 4. Regional groundwater elevation contours	7
Figure 5. Salter Point Lagoon monitoring locations. Points 01, 02 and 03 are surface water (SW points for phytoplankton, physico-chemical and nutrients.) sampling 12
Figure 6. Water levels at Barrack St Jetty (four week moving average)	20
Figure 7. Monthly total precipitation at Jandakot Aerodrome	21
Figure 8. Monthly mean maximum temperature at Jandakot Aerodrome.	22
Figure 9. Salter Point Lagoon bathymetry	23
Figure 10. Surface water levels at Barrack St Jetty, the Lagoon and in the Canning River Estuary 2018 – 31 May 2018).	(22 March 26

Figure 11. Expected groundwater inflow zone	28
Figure 12. Groundwater levels recorded by groundwater loggers	30
Figure 13. Total nitrogen in surface water. SW01: Estuary, SW02: Lagoon channel, SW03: Lagoon centre	e 34
Figure 14. Ammonia-N in surface water. SW01: Estuary, SW02: Lagoon channel, SW03: Lagoon centre	34
Figure 15. NOx-N in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lag	goon 36
Figure 16. TP in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lagoon ce	entre 37
Figure 17. DRP in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lag	goon 37
Figure 18. Total nitrogen concentrations in groundwater	40
Figure 19. Ammonia-N concentrations in groundwater	41
Figure 20. Nitrate/nitrite (NOx) concentrations in groundwater	41
Figure 21. Total phosphorus concentrations in groundwater	42
Figure 22. Dissolved reactive phosphorus (DRP) concentrations in groundwater	42
Figure 23. Free-floating filamentous mats, Salter Point Lagoon, December 2016	48
Figure 24. Benthic mat and floating dislodged fragments of Microcystis botrys (24th April 2018)	49
Figure 25. Phytoplankton community composition of the Salt Point Lagoon study area (March to 2018)	May 52
Figure 26. Salter Point Lagoon vegetation condition map	54
Figure 27. Salter Point Lagoon and surrounding areas 1965 aerial image (left) and the 2018 image (r showing vegetation extent and areas of vegetation degradation (Source: Landgate, 2014 and Nearm 2018)	
Figure 28. Iconic Western Australian Christmas Tree (Nuytsia floribunda) at the entrance to Salter F Lagoon	Point 56
Figure 29. Black Swans (and a single Australian Pelican) that had been roosting at the mouth of Lagoon.	f the 60
Figure 30. View from the Estuary back into the Lagoon with a single Eastern Great Egret foraging in channel.	n the 60
Figure 31. Carnaby's Black-Cockatoo feeding on Acacia saligna	61
Figure 32. Pelicans and other waterbirds feeding on school of mullet	61
Figure 33. Suggested area for reduction in groundwater abstraction	66
Figure 34. Areas of tidal channel with elevation greater than 0 m AHD	67

LIST OF APPENDICES

Appendix 1 Level and Feature Survey	74
Appendix 2 Groundwater Well Construction Logs	75
Appendix 3 DBCA Permit to Conduct a Scientific Study	76
Appendix 4 Historical Water Quality in Canning Estuary at Salter Point	77
Appendix 5 Sketch of Groundwater Flows	78
Appendix 6 Water and Sediment Quality Laboratory Reports	79
Appendix 7 Vegetation Species	80
Appendix 8 Fauna Species	81

GLOSSARY

The following terms used in the report have the meanings ascribed below:

Word or phrase	Refers to
algae	Informal term for a large, diverse group of photosynthetic organisms
algal spore	A cell that germinates without fusing to form a new individual
benthic	Relates to the bottom of a body of water, e.g. a habitat at the lowest level of a body of water
benthos	A community of organisms that lives on, in or near the benthic zone
biofilter	An excavated basin or trench that is filled with a porous filter media and planted with vegetation to remove pollutants from stormwater runoff
bioflocculant	A biological flocculant that promotes the clumping of particles in wastewater treatment
chlorophyll a	A specific form of chlorophyll used in oxygenic photosynthesis and is present in all algal and cyanobacterial species
choke	Experience a reduced tidal range due to a narrow entrance
ciliates	A group of protozoans characterized by the presence of hair-like organelles called cilia
circumneutral	Having a pH of between 6.5 and 7.5
cladocerans	An order of small crustaceans commonly called water fleas
coccoid	Shaped like or resembling a coccus/ spherical
cryptic	An organism that is seldom observed and their habitat requirements is not well known
cryptophytes	A taxonomic group of algae belonging to the Cryptophyceae, common in most water bodies
Cyanobacteria	Commonly referred to as blue-green algae. A group of prokaryotes belonging to the Kingdom Monera
cyanophyte	A member of the division Cyanobacteria
depauperate	Lacking in numbers or variety of flora or fauna species (or ecosystem)

Word or phrase	Refers to
diatom	A single celled alga, with a siliceous skeleton (frustule), common term for members of the division Bacillariophyta
dieback	A condition in which a tree or shrub begins to die from the tip of its leaves or roots backwards, owing to disease or an unfavourable environment
epiphyte	An organism that grows on the surface of a plant or macroalgae (in water)
estuary	A tidal mouth of a large river, where the tide meets the stream
euryhaline	An aquatic organism able to tolerate a wide range of salinity
eutrophication	A term describing an excessive richness of nutrients in a body of water
filamentous	The growth of single into elongated filaments or threads
first flush	The initial surface runoff of a rainstorm
floating mat	An algal mat that occurs on the surface of a water body comprising of cyanobacteria and other algal groups, mostly filamentous. Usually dislodged from the surface of the sediment
hydraulic conductivity	This describes the ease with which a fluid (usually water) can move through pore spaces or fractures
hydraulic gradient	A vector gradient between two or more hydraulic head measurements over the length of the flow path
hydraulic head	A specific measurement of liquid pressure above a geodetic datum
invertebrate	animals that neither possess nor develop a vertebral column (backbone)
lunar nodal cycle	An 18.6-year cycle in the magnitude of the lunar diurnal tide determined by the relative movement of the plane in which the Moon orbits the Earth
macroaglae	Refers to several species of macroscopic, multicellular, marine algae e.g. seaweed

Word or phrase	Refers to
marsh	an area of low-lying land which is flooded in wet seasons or at high tide, and typically remains waterlogged at all times
microenvironment	the immediate small-scale environment of an organism or a part of an organism, especially as a distinct part of a larger environment
microinvertebrate	Invertebrate of microscopic size (< 150 µm)
mucilage	A polysaccharide produced by plants, algae and cyanobacteria/bacteria forming an external layer on the organism
oxidation	A loss of electrons or increase in oxidation state by a molecule or atom
phytoplankton	Microscopic, autotrophic (algae, cyanobacteria) components of the plankton community
redox	A chemical reaction in which the oxidation states of atoms are changed and involves both a reduction and an oxidation process; which allow for electron transfer processes
riparian	Relating to, or situated, on the banks of a river or stream. The riparian zone is the interface between land and a river or stream
rotifer	Are commonly called wheel animals, they make up a phylum of microscopic and near-microscopic aquatic invertebrates (pseudocoelomate)
saltmarsh	a coastal ecosystem in the upper coastal intertidal zone between land and open saltwater or brackish water that is regularly flooded by the tides
salt pan	A flat expanse of ground covered with salt and other minerals
sedgeland	Land where sedge grows in abundance
sill	an underwater ridge or rock ledge extending across the bed of a body of water
spit	an elongated sandy deposit that extends out into open water in the direction of a longshore current
substrate	The surface or material on or from which an organism lives, grows, or obtains its nourishment

Word or phrase	Refers to
swale	A water sensitive design feature consisting of a linear channel in the ground lined with grass or other vegetation
total kjeldahl nitrogen	The total concentration of organic nitrogen and ammonia
turbidity	The cloudiness or haziness of a fluid caused by large numbers of individual particles that are generally invisible to the naked eye
weir	A barrier across the horizontal width of a river that alters the flow characteristics of water and usually results in a change in the height of the river level

ABBREVIATIONS

E

The following terms used in the report.

Abbreviation or acronym	What it stands for
ABRS	Australian Biological Resources Systematics
AHD	Australian Height Datum
ANZECC	Australia and New Zealand Environment Conservation Council
ARI	Average Recurrence Interval
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
AS/NZS	Australian Standard/New Zealand Standard
BOM	Bureau of Meteorology
CBD	Central Business District
CoSP	City of South Perth
DBCA	Department of Biodiversity, Conservation and Attractions
DWER	Department of Water and Environmental Regulation
DoW	Department of Water
DPAW	Department of Parks and Wildlife
DRP	Dissolved Reactive Phosphorus
EPA	Environmental Protection Authority

Abbreviation or acronym	What it stands for
EIA	Environmental Impact Assessment
GW	Ground Water Sample (Syrinx, 2018)
ISQG	Interim Sediment Quality Guide
NEPM	National Environment Protection Measures
NOx	Total oxidised nitrogen (the sum of the nitrate and nitrite)
NRMMC	Natural Resource Management Ministerial Council
OHS	Occupational Health and Safety
ORP	Oxidation Redox Potential
PEU	Phytoplankton Ecology Unit
SD	Stormwater Sample (Syrinx, 2013)
SED	Lagoon Sediment Sample (Syrinx, 2013)
SW	Surface Water Sample (Syrinx, 2018)
TN	Total Nitrogen as N
ТР	Total Phosphorus as P
TDS	Total Dissolved Solids
WIR	Water Information Reporting. Refers to a database surface and groundwater information supplied by the Department of Water.

PART 1: INTRODUCTION

1.0 PROJECT BACKGROUND

This comprehensive study of the Salter Point Lagoon (the Lagoon) was commissioned by the City of South Perth to characterise the hydrology, and chemistry of the Lagoon with a purpose of elucidating conditions that favour algal growth and developing appropriate recommendations for the management of this unique ecosystem. The study was triggered by concerns from local residents over extensive coverage across the surface water of the Lagoon of floating algal mats between January 2016 and April 2017. The proliferation of the mats was seen as a bloom with locals fearing the health of the Lagoon was deteriorating. The floating mats were predominantly composed of the filamentous green algae, *Chaetomorpha* and *Cladophora* species. Aerial photography of the extent of the "bloom" is shown on Figure 1.

Since the Lagoon is dynamic in nature, connected hydraulically to the Canning River Estuary (the Estuary), the task of determining the most appropriate management action is complex. A highly considered, and possibly a long term investigation beyond the scope of this study, is therefore required. The situation in the Lagoon is further complicated by the filling of the channel with limestone rocks by members of the public, presumably to gain access across the channel. The result is altered flow and the subsequent build-up of sediment at the mouth of the Lagoon.

2.0 PROJECT OBJECTIVES AND TASKS

The objective of this study was to develop a sound methodology, within the timeframe for this project (March to June 2018), and a practical, succinct and pragmatic set of recommendations and management actions for both the short term and long term management of the Lagoon.

The project tasks were to:

- Describe and measure tidal interactions and groundwater input and output (water flows in and out of the Lagoon);
- Describe the general hydrology of the Lagoon;
- Assess the nutrients levels in the sediment, surface water and groundwater (i.e. assess water and sediment quality);
- Conduct a vegetation condition survey and fauna survey to a level that would enable formulation of management recommendations;
- Provide recommendations for short and long term management of the Lagoon with a focus on water quality improvement, reduction of sedimentation and improvements of flows between the Estuary and the Lagoon via the lagoon inlet/outlet channel;
- Assess the risks / impacts of dredging the Lagoon as a management option.

SALTER POINT: LAGOON STUDY

1. January 2016 – blooms visible

2. May 2016 – peak in bloom

3. November 2016 – peak in bloom

4. January 2017 – just before dieoff of blooms

5. April 2017 – end of dieoff of blooms

6. April 2018 – middle of study period

Figure 1. Aerial imagery showing the extent of the mat coverage at Salter Point Lagoon from January 2016 to April 2018

3.0 SITE CONTEXT

3.1 LOCATION AND SURROUNDING LAND USE

Salter Point Lagoon is located within the suburb of Salter Point, approximately 8.5 kilometres (km) south of the Perth Central Business District (CBD) Western Australia (Figure 2). The Lagoon is located within ecologically significant native bushland as part of the Canning River Foreshore, Salter Point to Wilson, Bush Forever Site 333 (Dell and Banyard, 2000). The land to the north of the Lagoon is residential housing and the Canning River Estuary surrounds the land to the east, south and west of the Lagoon.

3.2 LOCATION WITHIN SWAN-CANNING ESTUARY

The Lagoon is located within the Swan-Canning Estuary (the Estuary). The Estuary is described as a permanently open valley estuary (Hodgkin and Hesp,1998) receiving flow from two tributaries, the Swan-Avon and Canning Rivers. Valley estuaries are characterised by large flow with extreme changes in salinity. The Canning River dissects through the Bassendean Dune system of the Swan Coastal Plain and is estuarine until Kent St Weir. Generally, it is shallow throughout, 4 m to 5 m to Mt Henry, then less than 1 m upstream of Salter Point. The Estuary is a microtidal system, strongly influenced by seasonal variation in rainfall. It has been described as a seasonal estuary, this being the dominant hydrological feature (Hodgkin, 1987). In seasonally dominated estuaries the intensity of river discharge is the major influence on the salinity of the systems (formation of the salt wedge) followed by tidal variations (Hamilton *et al.*, 2006). Winds are also a major influence, generating waves that affect circulation of nutrients and sedimentation (Brearley, 2005). Salinity is then one of the major determinants of the ecology of the system.

The community structure (biota) in the Estuary is one of continuous recruitment with a diverse marineestuarine fauna. Mostly euryhaline biota (organisms able to tolerate a range of salinities from fresh to saline) dominate these systems. More freshwater forms occur near the river entrances and marine species nearer to the coast.

3.3 LAGOON MORPHOLOGY

The Lagoon is hydraulically connected to the Canning Estuary through a narrow tidal channel located at its southern end. The Lagoon also has a sandy spit at the southern end. A sediment sill is located between the spit and the sedgeland foreshore on the east side of the Lagoon (Figure 3).

3.4 GEOLOGY AND SOILS

Regional geology mapping (Gozzard, 1983) indicates the following soil is expected around the Lagoon:

S14 SAND - white to pale grey, subangular to subrounded, medium to coarse-grained quartz sand, abundant shells and shell fragments of alluvial origin.

The Lagoon area is mapped as "*high to moderate risk of ASS occurring with 3 m of the natural soil surface*" on DER (2014) Acid Sulfate Soil (ASS) risk mapping.

3.5 WATER FLOWS

The three water flows influencing the Lagoon are tidal flows, groundwater flows and a small volume of stormwater inflow as detailed in the sections below.

3.5.1 Tidal Flows

Changes in water levels in the Estuary are influenced by the daily tidal range (0.1 m to 0.6 m), being an open system with no barrier to the ocean, and river discharge (rainfall) (Hodgkin, 1987). When the Estuary levels rise and fall, exchange occurs between the Estuary and the Lagoon via the tidal channel.

3.5.2 Groundwater Flows

Groundwater contours from the Perth Groundwater Atlas (DoE, 2004) indicate groundwater flow in the area is from north-northeast to south-southwest towards the Canning River Estuary (Figure 4).

It is likely groundwater flows into the Lagoon from the north and radially out of the Lagoon towards the east, west and south into the Estuary. However, changes in the water of the Lagoon due to tidal fluctuations, storm surge and stormwater inflows could change the groundwater flow into and out of the Lagoon. For example, if the water level of the Lagoon rises sufficiently during a storm and/or high tide event this would slow down the seepage inflow from the north.

3.5.3 Stormwater Flows

A stormwater pit drain is located to the north of the Lagoon on Salter Point Parade (Figure 3). Stormwater runoff is channelled from the road directly into the northern vegetated area surrounding the Lagoon, potentially entering the Lagoon as well.

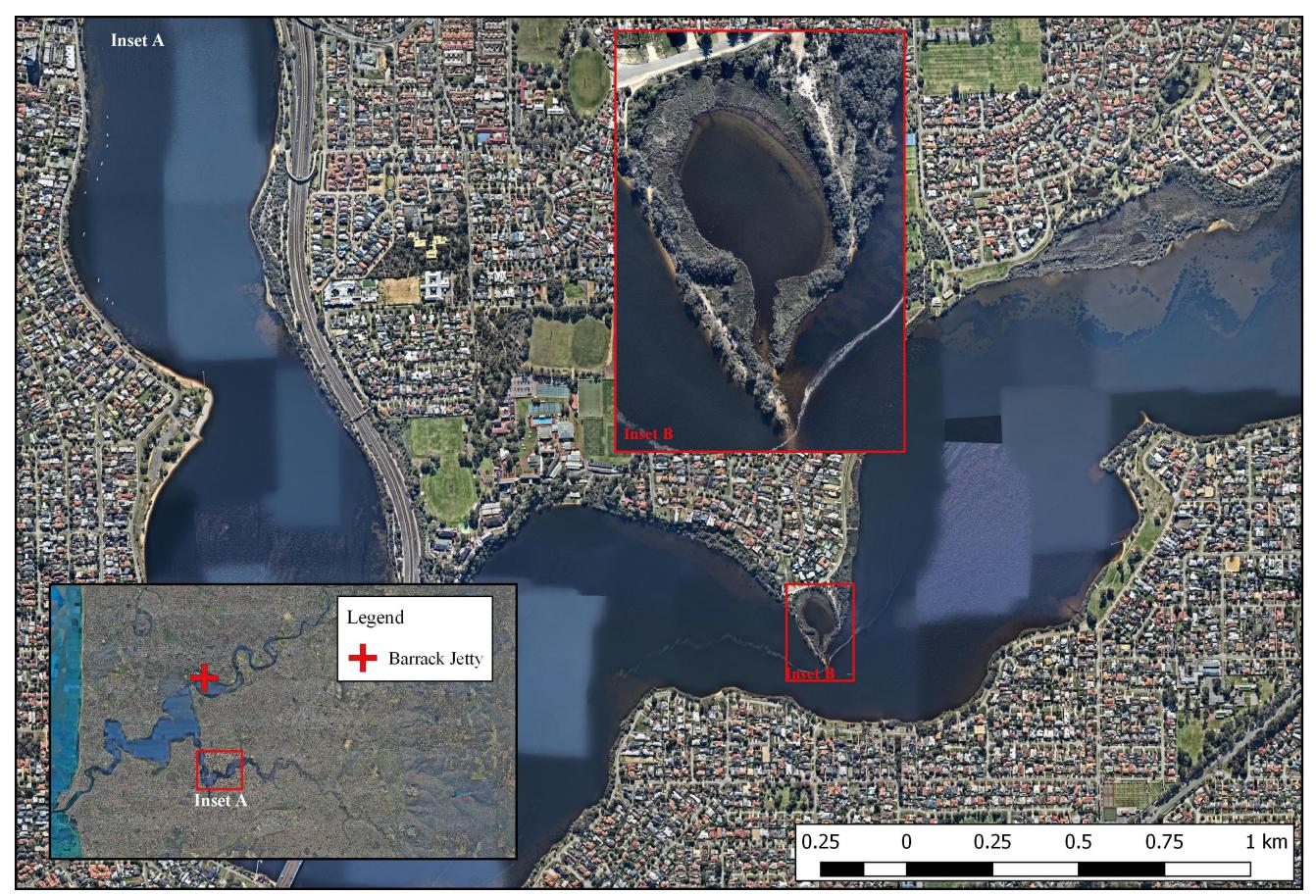


Figure 2. Location of Salter Point Lagoon. Insert A shows the location of the Lagoon within the Swan-Canning Estuary.

SALTER POINT: LAGOON STUDY

SALTER POINT: LAGOON STUDY

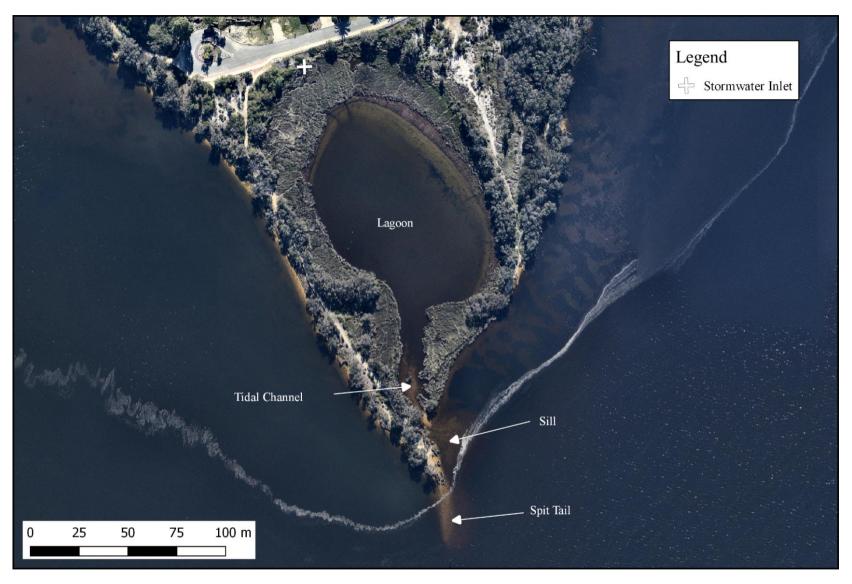


Figure 3. Morphology of Salter Point Lagoon

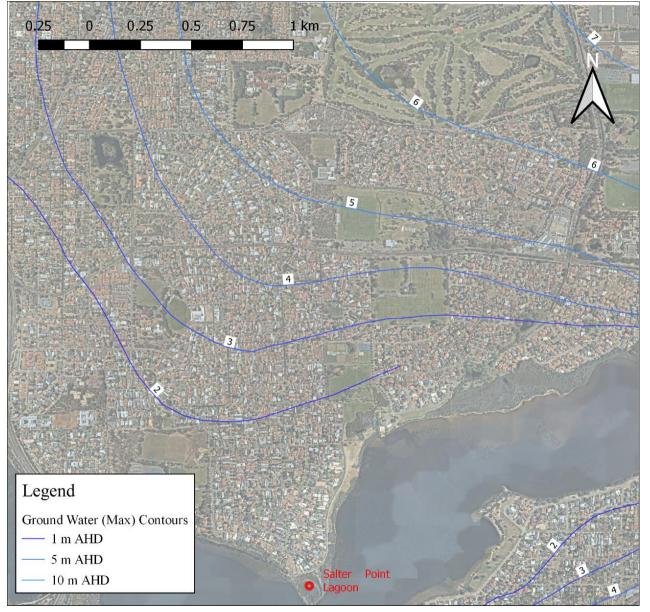


Figure 4. Regional groundwater elevation contours

3.6 PHYTOPLANKTON AND MACROALGAL BLOOMS

Estuaries are dynamic systems with cycles and processes operating at a range of spatial and temporal scales resulting in a variety of biotic communities. The phytoplankton and macroalgae present in the Estuary are controlled by the physical and chemical processes that are seasonally driven and more variable in estuaries than in the marine environment (Deeley and Paling, 1999). Changes in the Estuary, such as an increase in available nutrients following a flush of fresh water, can trigger the rapid growth of particular algae and form a bloom. The Estuary typically undergoes seasonal succession of phytoplankton. Diatom blooms are typical every Autumn and late Spring with dinoflagellate abundances increasing in early Autumn (Brearley, 2005; DoW, 2016).

The Estuary has a much higher diversity of macroalgae, such as *Chaetomorpha* and *Cladophora* species, than other estuaries in the south-west of Australia. This can be attributable to the high habitat diversity in the system with the green filamentous algae dominating in the upper Canning River Estuary (Brearley, 2005). In the 1990s high number of the filamentous green alga, *Rhizoclonium* sp., was present at Riverton Bridge and extended down to Mt Henry Bridge in 1996 (Brearely, 2005). Historically, there appears to have been problems with the growth and decomposition of filamentous algae in the Swan River estuary since settlement. However, the exact causes of the appearance and disappearance were unknown (Hodgkin and Vicker, 1987). Like phytoplankton, the distribution and abundance of macroalgae is seasonally driven. Certain years may be more favourable to their growth than at other times. And, like phytoplankton, macroalgae are controlled by physical factors such as wave action, tidal movement, and changes in salinity, nutrients and light (Deeley and Paling, 1999).

3.7 COMMUNITY AND ENVIRONMENTAL VALUES

The Lagoon is the last remaining natural lagoon of this type within the Swan - Canning River System (SRT, 2009). The Swan-Canning Estuary is listed as a nationally important wetland in the Directory of Important Wetlands (Environment Australia, 2001) and this includes the tidal and inter-tidal lagoons and marshes located along the estuary. As such, Salter Point Lagoon is identified as an Environmentally Sensitive Area (under the *Environmental Protection Act 1986*) within a high conservation area requiring protection. The foreshores of the Swan and Canning Rivers and the Estuary are also protected under the *Swan and Canning Rivers Management Act 2006* which created the Swan Canning Riverpark managed by the DBCA.

The environmental values, as per Environment Australia (2001), for the Lagoon fall into the following categories:

- Aquatic ecosystems,
- Recreational and aesthetic, and
- Cultural.

The Canning River is a registered Aboriginal site (ID 3538) under Section 5 of the *Aboriginal Heritage Act 1972*. It has mythological significance to the Noongar people from its association with the Waugal. The path of the river across the Swan Coastal Plain was formed by the Waugal and follows the pattern of the Waugal's movements. The Canning River and its surrounding wetlands were also a source for ochre, food and water for the Noongar people (Australian Interaction Consultants, 2010).

The community response to the aesthetics of the Lagoon is an indication of the importance of the Lagoon to the public. It is therefore considered important to provide information to educate all stakeholders on the status and processes that drive the Lagoon, and how these influence the management of the area.

PART 2: METHODOLOGY

4.0 DESKTOP REVIEW

A desktop review was undertaken to distil available information on the Lagoon and its dynamics. The following data was reviewed for the past five years:

- Estuary water levels at the nearest level monitoring station (Barrack Street Jetty) by the Department of Transport.
- Canning River Estuary water quality data collected near Salter Point by the DBCA.
- Rainfall and air temperature data from the nearest BOM station (Jandakot Aerodrome).

Data was compared for the following periods to determine changes in properties that may be driving the phytoplankton blooms:

- Bloom period: September 2015 and May 2017.
- Non-bloom period: September 2013 and May 2015.

Groundwater data within the Salter Point area and freely available flora and fauna database searches were also reviewed to provide a wider context for analysing and interpreting the field data collected during this study.

5.0 SURVEY OF THE LAGOON BATHYMETRY AND SURROUNDS

The field study of the Lagoon commenced with a survey of the Lagoon bathymetry and surrounds on 16 March 2018. A map showing the survey area and results of the survey are included in Appendix 1. The survey was undertaken to record the volume and area of the Lagoon for water balance calculations and to identify drainage pathways for surface water runoff around the Lagoon.

5.1 LEVEL AND FEATURE SURVEY

The level and feature survey of the area outlined in red in Appendix 1 included:

- Ground and lagoon bed level with contours at 0.2 m intervals;
- Estimated depth and extent of sludge or soft sediment within the Lagoon;
- Details of any pipes e.g. invert and obvert levels of stormwater inlet to the north of the Lagoon.

The Lagoon channel inlet/outlet area (area outlined in yellow shown with in Appendix 1) was surveyed at a finer level of detail to determine if flow is being restricted through the channel:

Channel bed level contours at 0.1 m intervals;

 Channel bed levels at 0.05 m changes in height along the three profile lines (blue lines shown within Appendix 1).

The profile lines were surveyed approximately at monthly intervals during the study (27 March 2018, 10 April 2018, 2 May 2018, and 6 June 2018) to provide information on changes to surface elevation of the channel over time. Seven channel elevation monitoring stakes were installed by the surveyors to allow for measurements of surface elevation in the channel to be taken in between the surveys.

5.2 SURVEY OF MONITORING POINTS AFTER INSTALLATION

The location and elevation of seven channel elevation monitoring stakes were surveyed at the start of the survey on the 16 March 2018 and the location and elevation of the top of casing of the groundwater monitoring wells and housing for surface water level loggers were surveyed at the end of the survey on the 28 March 2018. The x and y locations of all monitoring points were connected to MGA94 Zone 50 coordinate datum the elevation (z) was spirit levelled with an estimated accuracy of +/-2 mm and connected to Australian Height Datum (AHD).

6.0 LAGOON HYDROLOGY ASSESSMENT

6.1 TIDAL INTERACTIONS ASSESSMENT

Tidal interactions between the Lagoon and the adjacent Estuary were assessed through high temporal resolution measurements of water levels and the measurement of the surface elevation along the inlet/outlet channel. Tidal flushing of the Lagoon was assessed by calculating the tidal prism as described in more detail below.

6.1.1 Surface Water Levels

Continuous water level recorders (Heron Nanologgers) were installed at the following locations:

- 1. Middle of the Lagoon; and
- 2. Estuary adjacent to the Lagoon.

The locations are shown in Figure 5. The location of the Estuary monitoring point was selected so as to not be in the path of boat traffic, yet still far enough from the shore to be inaccessible to passers-by (reduce the risk of vandalism or theft). The surface water level loggers were installed within slotted pipes secured to the Lagoon/Estuary bed by stakes. The loggers measured water levels at high at a high temporal resolution (5 minute intervals).

Data from the water level loggers was downloaded approximately every month, typically corresponding with each water sampling round. At the same time, measurements of the water level using an electronic water level meter were taken to assess the accuracy of the water level record.

Figure 5. Salter Point Lagoon monitoring locations. Points 01, 02 and 03 are surface water (SW) sampling points for phytoplankton, physico-chemical and nutrients.

SALTER POINT: LAGOON STUDY

6.1.2 Surface Elevation Changes Along the Channel

As discussed in Section 5.1 changes in surface elevation along the tidal channel were monitored via monthly level surveys of profile lines across the channel. Seven survey stakes were also installed at approximate 5 m to 10 m intervals along the channel. Measurements of the distance from the top of the stake to the channel bottom were taken approximately every month during each sampling event and subtracted from the surveyed elevation of the top of the stake to calculate the channel elevation at each stake. The difference in surveyed and measured channel levels between each observation indicates the average surface elevation changes over the observation period.

The method described above does not distinguish between surface (e.g. erosion) and subsurface (e.g. compaction) processes behind the surface elevation changes but it is able to provide relatively robust data of surface elevation changes in intertidal zones (Thomas and Ridd, 2004). This is provided the stakes do not interfere with accretion patterns by disturbing wave and current patterns (Bird, 1986). Observations of flow through the channel were also recorded during each site visit.

6.1.3 Calculation of Tidal Prism

In addition to water level and channel elevation measurements, tidal interactions in the Lagoon were also assessed by calculating the tidal prism using the following equation:

Where:

T – tidal prism (m³)

H – tidal range (m)

A – surface area of the Lagoon (m²)

The tidal prism is the change in volume of the Lagoon between high and low tide or the volume of the incoming or outgoing tide plus any other net flows such as the groundwater flows.

Measurements of tidal flow through the channel from the installation of a weir or a stage discharge relationship were considered. However, as these techniques are designed to measure streamflow in one direction and flow through the channel is tidal and will change directions, it was not used. The channel is also several metres wide and the flow divides into two branches which further complicates measurements of the flow. Installation of monitoring equipment in the channel was considered too risky as it could be easily accessed and therefore not secure. A weir structure would also require regular maintenance to remove silt/sediment build up.

6.2 GROUNDWATER INPUT AND OUTPUT ASSESSMENT

To analyse groundwater (GW) inputs and outputs, three groundwater monitoring wells were installed at the GW locations shown in Figure 5. The coordinates for each of the wells are included in Table 1.

Groundwater Well ID	Easting	Northing
GW01	393657.506	6455800.141
GW02	393549.467	6455755.032
GW03	393626.110	6455833.007

Table 1.	Groundwater	Well	Coordinates

The locations for the groundwater wells were selected based on likely groundwater contours as per the Perth Groundwater Atlas discussed in Section 3.5.2. GW03 was chosen as an upgradient bore to characterise groundwater potentially flowing in the Lagoon and GW01 and GW02 were chosen to characterise groundwater potentially flowing in out or out of the Lagoon, depending on the difference between Lagoon and Estuary levels and to allow for triangulation to calculate groundwater flow direction.

All groundwater monitoring wells were installed in accordance with the Department of Water (2006) Water Quality Protection Note – Groundwater Monitoring Bores and the Australian Government – National Water Quality Management Strategy Minimum Construction Requirements for Water Bores in Australia. Well construction logs are contained in Appendix 2.

Continuous water level recorders (Heron Nanologgers) were installed in the three groundwater bores. The data was downloaded and the levels checked using an electronic water level meter dipper approximately monthly, at the same time as the data download of the surface water loggers.

Groundwater levels and the relative hydraulic head of the Lagoon were compared to understand the movement of groundwater and therefore potential direction of any nutrients associated with that groundwater.

Groundwater flows in and out of the Lagoon were estimated using Darcy's Law:

$$\mathbf{G} = -\mathbf{K} \mathbf{I} \mathbf{A}$$
 (Equation 2)

Where:

G – estimated net groundwater flow (m³s⁻¹)

K – hydraulic conductivity (ms⁻¹)

I – hydraulic gradient (m)

A – cross-sectional area through which flow occurs (m²)

6.3 STORMWATER FLOWS MEASUREMENT

The volume of stormwater inflow into the lagoon from the drain SD1 was estimated based on its catchment size. The stormwater drain was submerged at the time of sampling so bucket measurements of flow were not possible.

6.4 WATER BALANCE AND FLUSHING TIME ASSESSMENT

The assessment of the Lagoon hydrology was not intended to complete a precise water balance of the Lagoon. Collection of the data required to accurately evaluate all the terms in the water balance of a tidal lagoon is expensive and time consuming. Because of this, few detailed scientific studies have been documented (Kjerfve, 1994). Instead, the flushing time of the Lagoon was estimated from the tidal range using the following equation:

Flushing Time = Depth of Lagoon (m) x Tidal Period (days) / Tidal Range (m) (Equation 3)

The tidal prism was also compared the estimated volumes of groundwater inputs and outputs and stormwater flows to assess the relative importance of each of these components of the water balance and estimate the volume of tidal flushing.

7.0 WATER QUALITY SAMPLING METHODOLOGY

Water quality sampling of the Lagoon, the adjacent Estuary, surrounding groundwater and stormwater inflows was undertaken according to the schedule in Table 2.

Table 2. Water quality sampling schedule

Site	Frequency	Date
Surface Water Quality (lagoon and river)	Monthly	28 th March 24 th April 30 th May
Groundwater Quality	Bi-monthly	28 th March 30 th May
Stormwater Quality	One-off (first major rain event during study)	25 th May

All sample collection was conducted by qualified Syrinx Environmental staff in line with the methodology outlined in Australian/New Zealand Standards for Water Quality Sampling Series AS/NZS 5667:1998. Sample sites for water quality testing were proposed based on our understanding of the site, the hydrology of groundwater flows, tidal interactions and the location of stormwater inlets (Figure 5).

Water quality data was compared to relevant standards and guidelines (i.e. ANZECC 2000 for estuarine water and sediments) and relevant research literature.

7.1 SURFACE WATER SAMPLING METHODOLOGY

Surface water sampling was undertaken at three locations using a canoe to access the locations marked as SW in Figure 5. The SW02 and SW03 sampling locations were placed within the Lagoon, whilst SW01 was located adjacent to the outlet of the Lagoon within the Estuary.

At each surface water location, the following parameters were measured in the field:

- pH, conductivity, total dissolved solids, dissolved oxygen and redox potential;
- Secchi depth, as a measure of the transparency of the water; and
- The indicative algal coverage of the Lagoon surface water and Lagoon bed.

Water samples were collected and analysed in the laboratory for the following parameters:

- pH, nutrients suite including ammonia, nitrite, nitrate, total Kjeldahl nitrogen, total nitrogen, total phosphorus, dissolved reactive phosphorus and reactive phosphorus;
- Total and dissolved metals suite including arsenic, cadmium, chromium, copper, lead, nickel, zinc aluminium, iron, selenium and mercury;
- Phytoplankton identification and enumeration and cyanophyte biovolume measurements; and
- Examination under the microscope of one sample of a benthic algal/cyanobacterial mat in the Lagoon and one sample of floating material that became detached from the mat to identify the main species forming the mat.

7.2 GROUNDWATER SAMPLING METHODOLOGY

Groundwater samples were collected at the three groundwater monitoring wells marked as GW locations in Figure 5 to gather data on nutrient and metal concentrations entrained in groundwater which could impact on the Lagoon. Purging and sampling of groundwater bores was consistent with AS/NZS 5667.1:1998 and AS/NZS 5667.11:1998. The groundwater was field tested and analysed for the same parameters as the surface water (excluding Secchi depth and phytoplankton/cyanobacteria analysis).

7.3 STORMWATER SAMPLING METHODOLOGY

The stormwater from drain SD1 marked on Figure 5 was sampled and analysed for nutrients and metals to understand what contribution these contaminants entrained in stormwater might have on algal blooms and the impact to Lagoon water quality. The sampling was also undertaken to identify whether a potential source of metal contamination from stormwater may be loading Lagoon sediments which has potential implications for certain management options i.e. dredging. The stormwater was field tested and analysed for the same parameters as the groundwater.

8.0 SEDIMENT QUALITY SAMPLING

Sediment samples were taken from both the Estuary and the Lagoon near the water sample locations (at the sediment (SED) locations in Figure 5) 28 March 2018. Samples were taken in accordance with the AS:NZ 5667.12:1999 for sampling bottom sediments. A Petite Ponar sampling device was used to ensure that discrete sediment samples are obtained while minimising oxidation of sediments. Lab analysis was conducted to characterise the potential impacts and risk to the Lagoon and other receptors should sediments be dredged and exposed to oxygenated conditions. The samples were analysed for:

- pH_F and pH_{FOX} to provide an indication if the sediments are acid sulfate soils and their reaction to exposure to oxygen;
- Total organic carbon;
- Nutrients suite including ammonia, nitrite, nitrate, total Kjeldahl nitrogen, total nitrogen and total phosphorus; and
- Total metals suite including arsenic, cadmium, chromium, copper, lead, nickel, zinc aluminium, iron, selenium and mercury.

9.0 LAGOON VEGETATION CONDITION ASSESSMENT

Vegetation condition assessment of the Lagoon and the immediate surrounding areas (upland) was conducted using the vegetation condition scale by Keighery (1994). Because the vegetation within the Lagoon is in Very Good to Excellent condition overall, the mapping was conducted at a much smaller scale so that it could be meaningfully used for data interpretation and management planning and recommendations. For example, existing methodologies average the condition across areas, such that an area of 1 ha may be rated as Very Good or Excellent, even though it may contain smaller patches 5 m² or similar of native vegetation that are of degraded condition due to weed invasion or poor plant health. We endeavoured to identify those patches (where present) to assist with data interpretation.

In addition to vegetation condition assessment the species recorded during traverses of the site were recorded and presented in a tabular form so that any impacts to those species can be examined.

10.0 FAUNA ASSESSMENT

A Level 1 fauna assessment of the site was undertaken to assist with management recommendations for the Lagoon. The Level 1 fauna assessment included a desktop review and site inspection undertaken in accordance with EPA *Guidance Statement No. 56* (EPA, 2004). The desktop review provides an inventory of the fauna species recorded in the general area of a site, while the site inspection provides information on the sorts of environments present that provide habitat for fauna, which allows for some contextual interpretation of the species list generated by the desktop search. The site inspection also provides the opportunity for some fauna observations to be made.

The desktop review involved accessing databases and reports from the general area and was conducted by Syrinx Environmental. Sources of information included:

- ATA Environmental (2001); report on East Clontarf (included multiple fauna surveys carried out by Bamford Consulting).
- Siemon (2000); surveys in the Salter Point/Waterford area in the 1970s and 1980s.
- April 2016 surveys at Cygnia Cove
- Naturemap incorporating DBCA and WA Museum fauna records (within 2 km).
- EPBC Protected Matters search tool (within 2 km).
- Birdlife Australia Birdata records (within 2 km).

The site visit was carried out on 23 February 2018 by Dr Mike Bamford, in conjunction with staff from Syrinx Environmental. Dr Bamford was familiar with the site, having undertaken studies at nearby Cygnia Cove and Riverton Traffic Bridge.

11.0 DIEBACK MANAGEMENT

Personnel involved in the study were made aware of dieback control methods and application of these protocols on site according to Syrinx's Standard Operating Procedure for dieback management (Syrinx, 2012). Particular care was taken during rainfall events as these are the times when transfer of disease is most likely. Personnel utilised strict dieback hygiene protocols each time when accessing or leaving the site (e.g. cleaning and sanitising boots with methanol spray) and used designated pathways.

12.0 OPERATIONAL HEALTH & SAFETY (OHS)

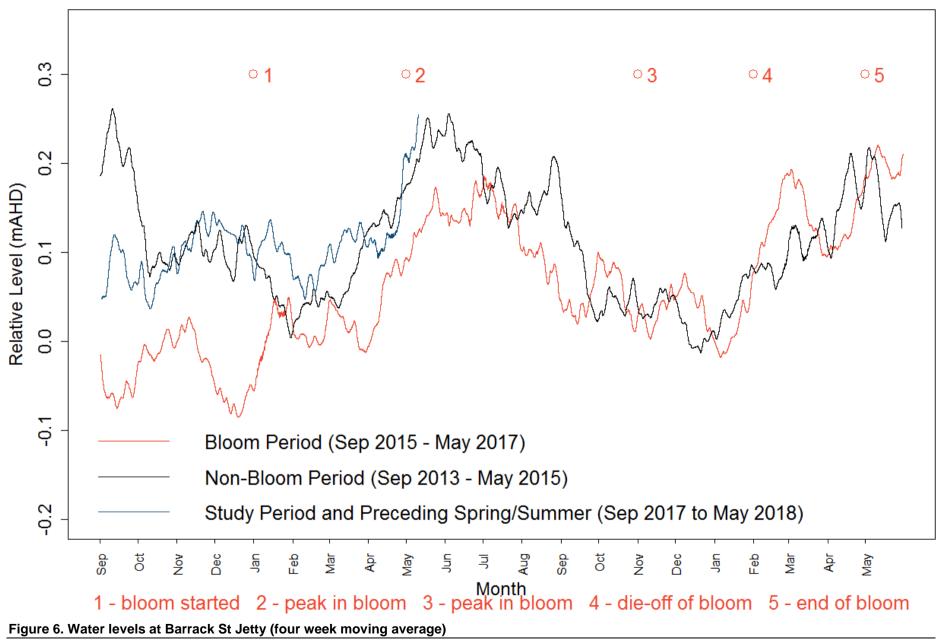
For the duration of the project Syrinx strictly adhered to the City's OHS requirements in addition to the Syrinx OHS procedures and policies. Safety risks and management actions for the field assessment were outlined in a Job Safety Analysis sheet prior to start of works which was submitted to the City for review and approval. All personnel involved in the monitoring activities underwent inductions required by the City of South Perth OHS protocols.

13.0 STAKEHOLDER CONSULTATION

Prior to the installation of any monitoring equipment at the Lagoon the Syrinx via the City of South Perth provided the DBCA with a description of the proposed scientific study and applied for approval to commence the study through the permit process, as required by regulation 16C of The *Swan and Canning Rivers Management Amendment Regulations 2012*. A permit authorising the scientific study was granted on the 13 March 2018 (Appendix 3).

PART 3: RESULTS AND DISCUSSION

14.0 REVIEW OF HISTORICAL WATER LEVEL, WATER QUALITY AND METEOROLOGICAL DATA


The desktop study highlighted a number of changes to water levels, rainfall levels and other climatic factors between historic average data and data collected in the spring of 2015 preceding the first major algae blooms. The main differences in the conditions this spring compared to the spring of 2013, when algal blooms were not a problem, were:

- Water levels at the Barrack St Jetty were up to 0.32 m lower (Figure 6),
- The monthly precipitation for September was 137.6 mm lower (Figure 7),
- The mean monthly maximum air temperature for September and October were 2.5°C and 2.7°C warmer than average, respectively (Figure 8).

Water levels at the Barrack St Jetty continued to be low compared to the non-bloom period until October 2016. After this time water levels in the Estuary were similar to water levels during the nonbloom period. The low water levels were likely related to declining tidal peaks between 2007 and 2017 associated with the 18.6-year lunar nodal cycle (Eliot, 2010). Four months after the water levels returned to pre-bloom levels the bloom began to die-off in February 2017. The mean monthly maximum temperature this month was more than 2°C cooler than in 2015 and 2016.

There was less difference in the plots of Total Nitrogen, Total Phosphorus and chlorophyll *a* for between the bloom and non-bloom periods (Appendix 4).

The review of the historical water levels and water quality data indicates the algal blooms in the Lagoon between January 2016 and May 2017 were caused by low water levels in the estuary, associated with the lunar nodal cycle, which is likely to have prevented flushing of the Lagoon. Low spring rainfall in 2015, would have contributed to low levels in the estuary and the reduced flushing of the Lagoon. High spring air temperatures in 2015 are also likely to have been a factor triggering the formation of the blooms, the shallow water temperature reflecting ambient air temperature.

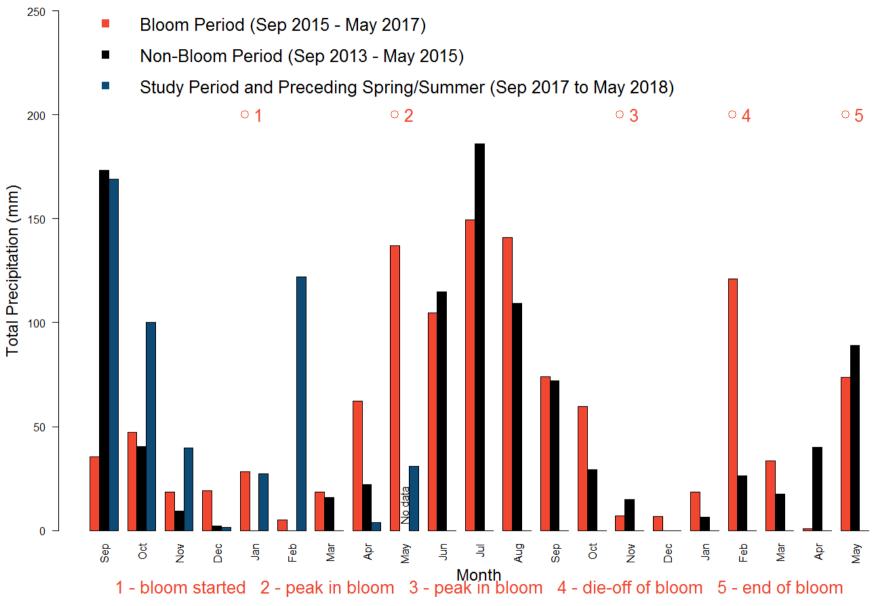
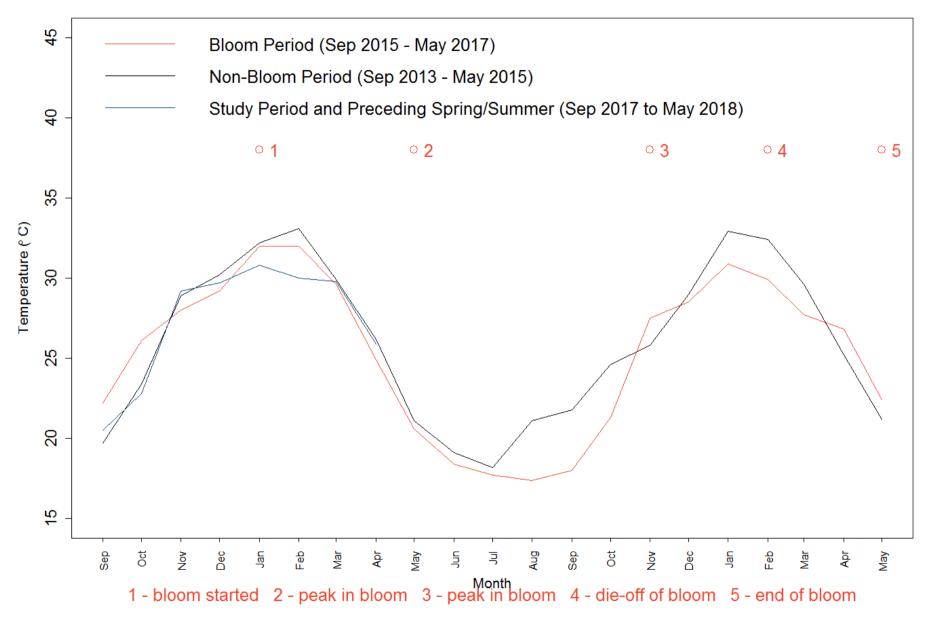
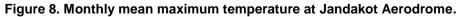




Figure 7. Monthly total precipitation at Jandakot Aerodrome

15.0 LAGOON FEATURE AND LEVEL SURVEY

The results of the level and feature survey of the Lagoon is included as Appendix 1. The Lagoon bathymetry is shown on Figure 9.

Figure 9. Salter Point Lagoon bathymetry

There was a thick layer of sludge, approximately 1 m to 2 m deep at the bottom of the Lagoon. The elevation of the Lagoon bed at its deepest point was -0.17 mAHD (on top of the sludge). The maximum water depth and estimated area and volume of the Lagoon at a range of water levels observed during the study are summarised in Table 3.

Water Level (m AHD)	Maximum Depth (m)	Estimated Area (m²)	Estimated Volume (m³)
0.0	0.17	5,400	-
0.2	0.37	11,780	1,714
0.3	0.47	12,312	2,939
0.4	0.57	12,505	4,113
0.7	0.87	13,149	7,977
0.8	0.97	13,368	9,302
0.9	1.07	13,477	10,642

Table 3. Lagoon dimensions

16.0 LAGOON HYDROLOGY

16.1 TIDAL INTERACTIONS

16.1.1 Surface Elevation Changes Along the Channel

The surface elevation of the channel generally increased during the study period as shown on the surveys of Profile Lines 1 to 3 in Appendix 1 and the channel elevations at the survey stakes shown in Table 4 below.

Table 4. Channel elevation at survey stakes (mAHD).

Stake ID	Survey Stake Elevation (mAHD)							
Slake ID	16/03/2018	4/04/2018	30/05/2018					
1	-0.114	0.035	-0.005					
2	-0.091	0	-0.03					
3	-0.061	-0.021	-0.06					
4	-0.083	0.047	-0.035					
5	-0.052	0.006	0.005					
6	0.031	-0.004	0.015					
7	-0.058	-0.016	-0.015					

Profile Line 2 intersects one of the highest sections of the tidal channel. It is expected that water will stop flowing through the channel when water levels drop below the minimum elevation along this profile line. The minimum elevation on this profile line is shown in Table 5.

Month Measured	Minimum Channel Elevation (mAHD)
March	-0.15
April	-0.13
May	-0.13
June	-0.12

Table 5. Minimum channel elevation for Profile Line 2

16.1.2 Surface Water Levels

During the study period water levels recorded in the Lagoon showed similar tidal signal to the water levels in the Estuary. This indicated that the Lagoon was almost always tidally connected to the Estuary over this period (Figure 10). Water levels in the Estuary were mostly identical to the water levels recorded at the Barrack St Jetty.

SALTER POINT: LAGOON STUDY

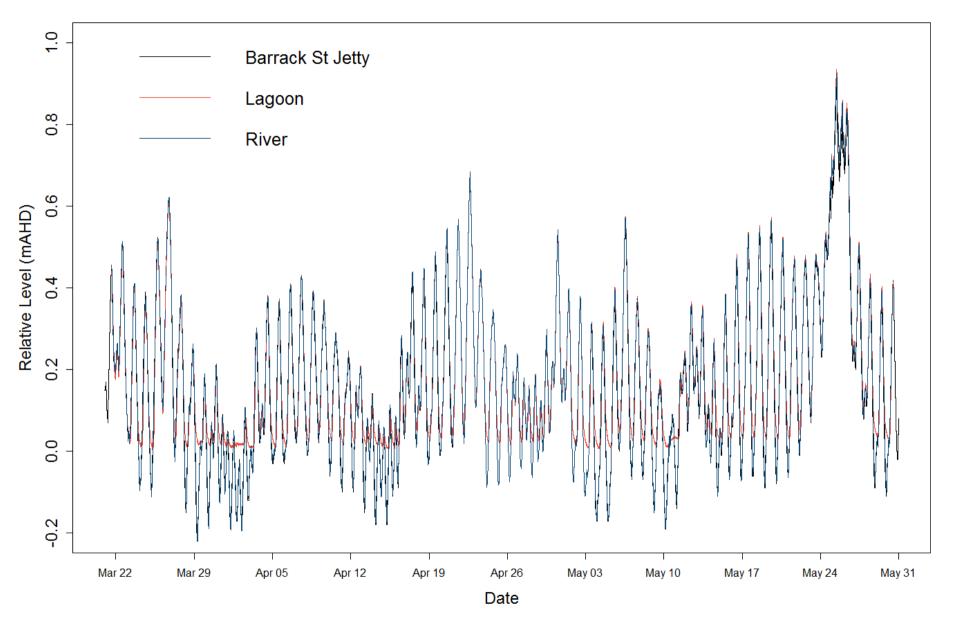


Figure 10. Surface water levels at Barrack St Jetty, the Lagoon and in the Canning River Estuary (22 March 2018 – 31 May 2018).

On many occasions the minimum water level in the Lagoon for each tidal period was not as low as in the Estuary indicating water was not always draining from the Lagoon at low tide. This occurred when the Lagoon level was at approximately 0 m AHD which is just above the minimum elevation along Profile Line 2 shown in Table 5. If water levels fall below 0 m AHD, water will not flow in or out of the Lagoon. However, during the study period the high tide was almost always above these levels so the Lagoon was usually flushed during high tide.

There was one short period (~2.5 days) between 1 April 00:00 and 3 April 12:00 when the tidal range of the Lagoon was zero, indicating there was no tidal flow in or out of the Lagoon during this time. This occurred because water levels in the Estuary were below 0 m AHD even during high tide.

When tidal flow ceased in the Lagoon the water levels at the Barrack Street Jetty were also below 0 m AHD. During the bloom period, more than 38% of the water levels records were below 0 m AHD at the Barrack St Jetty (Figure 6) whereas during the non-bloom period approximately 27% of the water level records were below this level.

16.1.3 Tidal Prism

Water balance calculations, including tidal prism, were calculated for two scenarios:

- Water Balance Scenario 1: No Tidal Flushing (2 April 2018)
- Water Balance Scenario 2: High Tidal Flushing (6 May 2018)

Scenario 1 represents a period where water levels are very low and there is no tidal range or tidal flushing and Scenario 2 represents a period where water levels are high, there is high tidal range and high tidal flushing.

Calculations of the tidal prism for the two scenarios are shown in Table 6 below.

For Scenario 1 the tidal prism was zero and for Scenario 2 it is 5,031 m³.

	Table 6	Tidal	prism	for tw	o scenarios
--	---------	-------	-------	--------	-------------

Scenario	Lagoon Water Level (m AHD)	Tidal Range (m) (H)	Approximate Lagoon Area (m²) (A)*	Tidal Prism (m³)* (HxA)
1	1 0.017		5400	0
2 - low tide	0.023	0.552	5400	5031
2 - high tide	0.575	0.552	12827	5051

16.2 GROUNDWATER INPUT AND OUTPUT

As shown on Figure 12 the water level in groundwater bores GW01 and GW02 shows a tidal influence, indicating they are influenced by the estuary levels. The water level is typically higher than the Lagoon in GW03 indicating there is a groundwater inflow into the Lagoon from the north.

Examination of aerial photography of the north eastern side of the Lagoon identified that lines of water flow are visible in the sand and the beach is more developed as a result (Figure 11). It is expected that most of the area inside this zone (outlined in orange) is providing some groundwater inflows through the lagoon during low tides (Mark Musgrave pers. comm. June 2016).

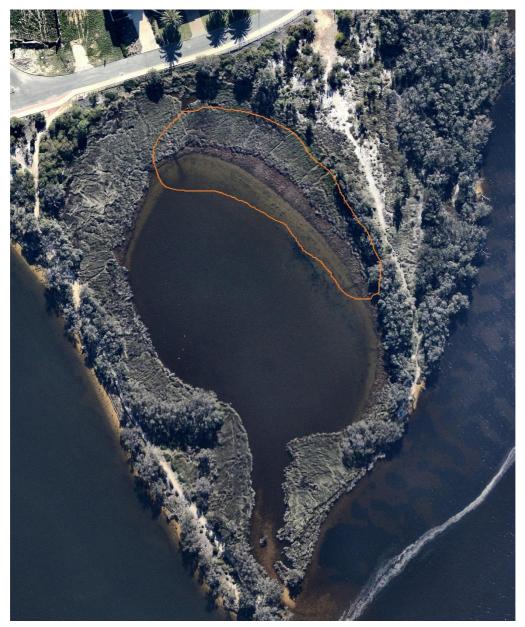
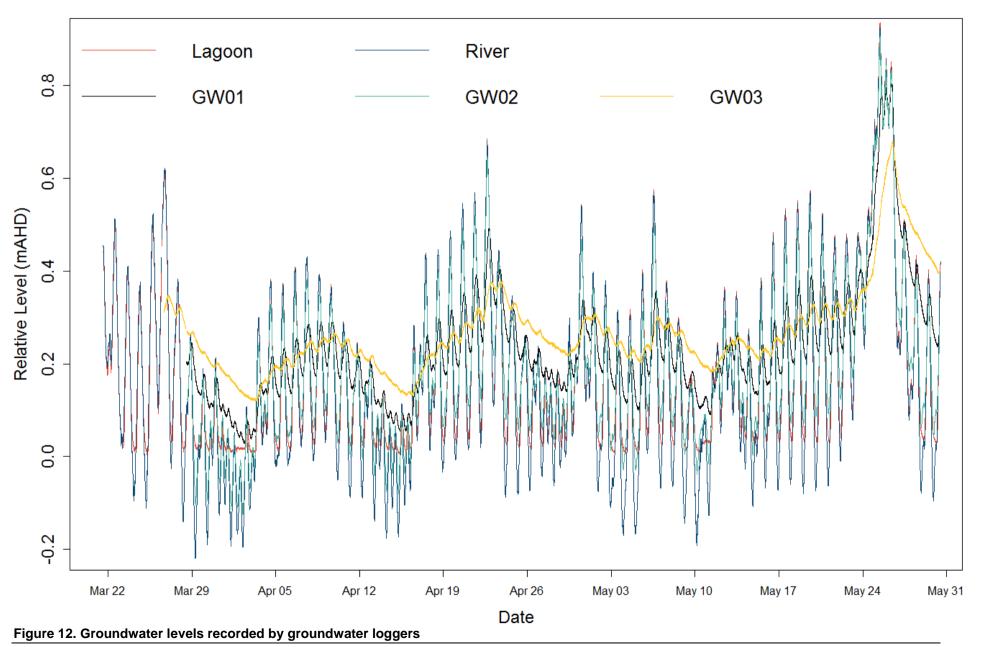


Figure 11. Expected groundwater inflow zone


Estimates of groundwater inputs and outputs into the Lagoon were calculated for the two water balance scenarios (Table 7). Sketches of the groundwater elevation contours for the two Scenarios are included as Appendix 5.

The following assumptions were made in the estimate of groundwater inputs and outputs:

- •The sandy soil surrounding the Lagoon has a hydraulic conductivity of 30 m/d, which is the middle of the range of values given by Davidson (1995) for fine to gravel (poorly sorted) (10 m/d) and medium to very coarse (moderately sorted) sand (50 m/d).
- Groundwater flows through the full depth of the Lagoon. A Lagoon depth of 0.5 m was used to calculate the area through which flow occurs.

For Scenario 1 the sketch of the groundwater contours confirmed groundwater flowed into the Lagoon from the north at low tide (Appendix 5). The groundwater inflow was estimated to be approximately 2 m^3 /day. Slightly higher rates of groundwater inflow would be expected during the wet season. It is also expected that river water would flow through the lagoon from the north east to south west.

The groundwater contours for Scenario 2 were sketched at high tide Appendix 5. The water level in the Lagoon and estuary were approximately equal and were higher than the groundwater to the north. It is expected that the groundwater inflow may be essentially static during high tides, with rising river levels slowing down the seepage inflow to the lagoon to the north, causing it to mound up (Mark Musgrave pers. comm. June 2016). The groundwater elevation contours indicate a mounding effect in the area around the N-E-W sides of the lagoon.

16.3 STORMWATER FLOWS

The stormwater inlet to the north of the Lagoon collects runoff from Salter Point Parade. The catchment area is small (0.16 ha). The runoff volume associated with a one-hour duration, one-year Average Recurrence Interval (ARI) event is estimated to be 24.91 m³.

16.4 WATER BALANCE AND FLUSHING TIME

Estimates of the flushing time of the Lagoon were calculated for Scenario 2 from the tidal range. The entire Lagoon was flushing during the tidal cycle (i.e. twice daily). The flushing time of the Lagoon is expected to be much higher if there is no tidal flow. For Scenario 1 an indicative flushing time of 473 days was estimated by dividing the Lagoon volume by the groundwater inflow. This estimate does not include flushing due to the seepage flow of estuary water through the lagoon but this flow is expected to be of a similar order of magnitude of groundwater inflow hence the flushing time would still be greater than one month if there was no tidal flow.

Tidal exchange with the Estuary was the largest component of the Lagoon water balance during the study. Contributions from groundwater and stormwater were small by comparison and only become important when water levels in the Estuary are very low.

The results indicate that for most of the study tidal exchange with the Estuary was the largest component of the Lagoon water balance. Contributions from groundwater and stormwater were small by comparison and only become important when water levels in the Estuary are very low.

Scenario	Zone	Hydraulic conductivity (K) (md ⁻¹)	rise (m)	run (m)	Hydraulic gradient (I) (m)	Lagoon depth (m)	Length of Lagoon perimeter through which flow occurs (m)	Cross-sectional area through which flow occurs (A) (m ²)	Estimated groundwater flow (m ³ d ⁻¹)
1	Inflow zone	30	0.123	40	0.0031	0.5	42	21	1.94

Table 7. Estimates of groundwater inputs into the Lagoon

Table 8. Estimates of Lagoon flushing time

Scenario	Estimated Volume of Water (m³)	Estimated groundwater inflow	Flushing Time (days)
1	918	1.94	473.2

Scenario	Lagoon Level (m AHD)	Depth of Lagoon	Approximate Tidal Period (days)	Tidal Range (m)	Flushing Time (days)	
2 - low tide	0.023	0.17	0.5	0.552	0.4	
2 - high tide	0.575	0.72	0.5	0.002	0.4	

17.0 WATER QUALITY

Water quality data collected as part of this study were assessed against the Australian and New Zealand Environment and Conservation Council (ANZECC) guidelines for Fresh and Marine Water Quality (ANZECC, 2000). Salter Point Lagoon and the Canning River Estuary (the Estuary) water samples were assessed against the criteria for South-west estuaries as well as toxicants for slightly to moderately disturbed ecosystems. Trigger values used for toxicants were those for 95% species protection. Trigger values are used to consider the risk of adverse effects due to nutrients, biodegradable organic matter and pH in various ecosystem types.

Full laboratory reports for all water quality sampling are attached as Appendix 6.

17.1 SURFACE WATER QUALITY

The sample locations for surface water are denoted by the SW Sample ID. SW01 refers to the Estuary sample location, SW02 refers to the sample location within the Salter Point Lagoon channel, and SW03 refers to the sample location within the Lagoon itself (Figure 5).

17.1.1 Physico-chemical measurements

The pH recorded across all sample locations was generally within the acceptable range for estuaries of pH 7.5 to 8.5, with exceedances generally within half a pH unit outside this range (Table 9). Dissolved oxygen (%) was generally slightly below the acceptable range of 90% to 110%, except for the April sampling event within SW03, where a high % saturation of dissolved oxygen was recorded at 173%, which may have been indicative of high production of oxygen from algal photosynthesis. Total dissolved solid concentrations were highly saline across all sampling locations in March and April (>20,000 mg/L) but were less saline in May, especially in the lagoon (<10,000 mg/L) (Table 9).

17.1.2 Nutrients

<u>Nitrogen</u>

Total nitrogen (TN) within the surface water locations was generally below the trigger value of 0.75 mg/L, except during the March sampling round at the SW01 and SW02 locations (Table 9, Figure 13), suggesting that the Estuary was a source of TN for the Lagoon during this time. Organic nitrogen within the Estuary (SW01) and the Lagoon (SW03) was generally above 80% as a percentage of TN, except during May, where due to the increase of nitrate, the organic fraction declined to 63% and 67% respectively (Table 9). Nitrate flushing within tributaries to the Estuary (Canning River) as a result of the first large rainfall events of the winter season may have impacted these concentrations.

In terms of mineral nitrogen (more readily available fractions), ammonia-N concentrations exceeded the 0.04 mg/L trigger value at all locations across all sampling events (Table 9, Figure 14). Ammonia-N concentrations were generally higher in the Estuary (SW01) than the Lagoon, except within the

Lagoon channel (SW02) during March (Table 9, Figure 14). This suggests that the Estuary may generally provide ammonia-N to the Lagoon, dependent on the flushing regime at any given time.

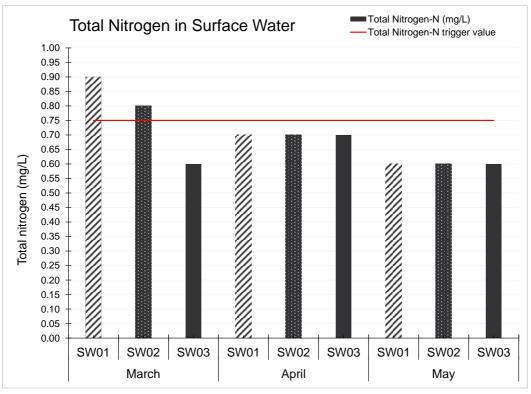


Figure 13. Total nitrogen in surface water. SW01: Estuary, SW02: Lagoon channel, SW03: Lagoon centre

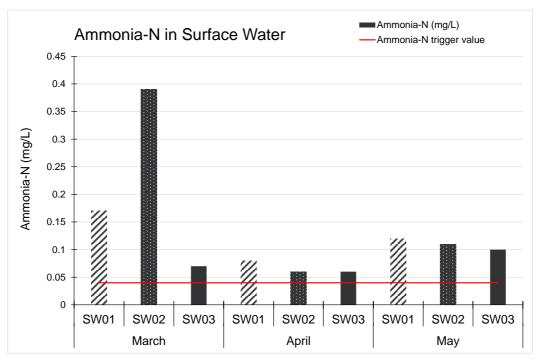


Figure 14. Ammonia-N in surface water. SW01: Estuary, SW02: Lagoon channel, SW03: Lagoon centre

Table 9. Surface water quality data. Orange highlights relate to exceedances of ANZECC (2000) trigger values

Surface water parameter	Unit	SWO	1 (Canning F	River)	SW02 (La	goon near tidal	channel)	SW03 (I	Lagoon oper	n water)	ANZECC (2000) South-
		28/03/2018	24/04/2018	30/05/2018	28/03/2018	24/04/2018	30/05/2018	28/03/2018	24/04/2018	30/05/2018	west Estuaries
Physico-chemical											
Temperature	°C	28.0	19.3	16.4	27.6	19.8	16.4	22.7	20.3	16.1	
pH (Field)	pH unit	8.35	7.03	7.80	8.00	7.24	7.68	7.19	7.57	7.76	7.5 - 8.5
pH (Lab)	pH unit	8.79	7.85	7.47	8.34	7.83	7.45	7.93	7.82	7.42	7.5 - 8.5
Dissolved oxygen	mg/L	-	8.32	-	-	9.00	-	-	11.70	-	
Dissolved oxygen %	%	-	97.1	83.3	-	99.2	86.2	-	173.0	69.9	90 - 110
Salinity	ppt	-	25.7	-	-	21.0	-	-	20.6	-	
Electrical conductivity	mS/cm	51.7	39.5	21.4	51.3	31.7	11.29	51.2	34.3	11.54	
TDS	mg/L	33,100.0	25,730.0	13,663.0	32,800.0	21,020.0	7,338.5	32,700.0	20,620.0	7,371.0	
ORP	mV	37.00	187.00	60.50	-54.00	149.00		96.00	149.00	-	
Secchi Depth	cm	>40	>40	>50	>3	>3	>20	>10	>10	>30	
<u>Nutrients</u>											
Total Nitrogen-N	mg/L	0.90	0.70	0.60	0.80	0.70	0.60	0.60	0.70	0.60	0.75
Ammonia-N	mg/L	0.17	0.08	0.12	0.39	0.06	0.11	0.07	0.06	0.10	0.04
Nitrite-N	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Nitrate-N	mg/L	<0.01	0.04	0.06	0.01	0.03	0.08	<0.01	0.03	0.07	
NOx-N	mg/L	<0.01	0.040	0.060	0.010	0.030	0.080	<0.01	0.030	0.070	0.045
Total Kjeldahl Nitrogen-N	mg/L	0.9	0.7	0.5	0.8	0.7	0.5	0.6	0.7	0.5	
Organic Nitrogen (calculation)	mg/L	0.73	0.62	0.38	0.41	0.64	0.39	0.53	0.64	0.4	
Organic Nitrogen % (calculation)	%	81%	89%	63%	51%	91%	65%	88%	91%	67%	
Total Phosphorus	mg/L	0.10	0.08	0.07	0.09	0.09	0.09	0.08	0.09	0.07	0.03
Dissolved Reactive Phosphorus	mg/L	<0.01	0.020	0.020	0.020	0.030	0.030	0.010	0.020	0.030	0.005
Particulate P (calculation)	mg/L	0.1	0.06	0.05	0.07	0.06	0.06	0.07	0.07	0.04	
Particulate P % (calculation)	%	100%	75%	71%	78%	67%	67%	88%	78%	57%	
				1							
Dissolved metal and metalloids											
Aluminium	mg/L	< 0.05	-	<0.01	< 0.05	-	<0.01	< 0.05	-	<0.01	0.055
Arsenic	mg/L	< 0.005	-	<0.001	< 0.005	-	<0.001	< 0.005	-	<0.001	0.013
Cadmium	mg/L	< 0.0005	-	<0.0001	<0.0005	-	<0.0001	< 0.0005	-	<0.0001	0.0002
Chromium	mg/L	< 0.005	-	<0.001	< 0.005	-	<0.001	< 0.005	-	< 0.001	0.001 (CrVI)
Copper	mg/L	< 0.005	-	0.005	< 0.005	-	0.002	< 0.005	-	0.002	0.0014
Lead	mg/L	< 0.005	-	<0.001	< 0.005	-	<0.001	< 0.005	-	<0.001	0.0034
Nickel	mg/L	< 0.005	-	<0.001	< 0.005	-	<0.001	< 0.005	-	<0.001	0.011
Selenium	mg/L	< 0.05	-	<0.01	< 0.05	-	<0.01	< 0.05	-	<0.01	0.011
Zinc	mg/L	< 0.025	-	0.013	<0.025	-	0.020	<0.025	-	0.016	0.008
Iron	mg/L	<0.25	-	0.07	<0.25	-	0.09	<0.25	-	0.09	10
Mercury	mg/L	<0.0001	-	<0.0001	<0.0001	-	<0.0001	<0.0001	-	<0.0001	0.0006
Total metal and metalloids											
Aluminium	mg/L	0.100	-	0.090	0.110	-	0.100	0.140	-	0.120	0.055
Arsenic	mg/L	< 0.005	-	0.001	< 0.005	-	< 0.001	< 0.005	-	< 0.001	0.013
Cadmium	mg/L	< 0.0005	-	< 0.0001	<0.0005	-	< 0.0001	< 0.0005	-	< 0.0001	0.0002
Chromium	mg/L	< 0.005	-	<0.001	<0.005	-	<0.001	< 0.005	-	<0.001	0.001 (CrVI)
Copper	mg/L	< 0.005	-	0.004	<0.005	-	0.002	<0.005	-	0.005	0.0014
Lead	mg/L	< 0.005	-	< 0.001	<0.005	-	< 0.001	<0.005	-	< 0.000	0.0034
Nickel	mg/L	<0.005	_	< 0.001	<0.005	-	<0.001	<0.005	-	0.001	0.0004
Selenium	mg/L	<0.05	_	<0.001	<0.005	-	<0.01	<0.005		<0.001	0.011
Zinc	mg/L	<0.05	-	0.015	<0.05	-	0.018	<0.025		0.021	0.008
Iron	mg/L	<0.025	-	0.013	<0.025		0.018	0.32	-	0.021	0.000
Mercury	mg/L	<0.23	-	<0.0001	<0.23	-	<0.0001	<0.0001	-	<0.0001	0.0006
worodry	ing/∟	NO.0001	-	NO.0001	<0.000T	-	<0.000T	NO.0001	_	NO.0001	0.0000

Nitrate and nitrite concentrations (NO_x) did not exceed the 0.045 mg/L trigger value at any location during the March and April sampling rounds, but exceeded the trigger value at all locations during the May sampling round (Table 9, Figure 13). This may have coincided with the first rainfall event of winter which could have flushed NOx from catchments and tributaries into the Canning River Estuary which then passed into the Lagoon.

Phosphorus

Total phosphorus (TP) in surface waters exceeded the 0.03 mg/L trigger value during all sampling events, with a TP range of 0.07 mg/L to 0.10 mg/L (Table 9,). TP concentrations during March were greater in the Estuary (SW01) than the Lagoon (SW02, SW03) however, during April 2018 this trend was reversed, and during May TP concentrations were equivalent in the Estuary and centre of the Lagoon (SW03) but were elevated in the Lagoon channel (SW02).

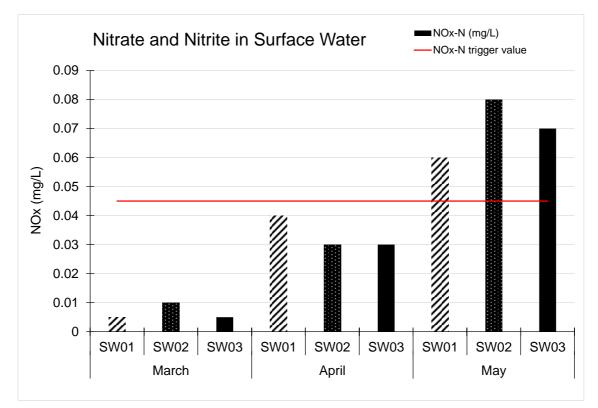


Figure 15. NOx-N in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lagoon centre

Dissolved reactive phosphorus (DRP) exceeded the 0.005 mg/L trigger value at all location during all sampling events (data range of 0.01 mg/L to 0.03 mg/L), except at SW01 during the March sampling round where DRP was not detected (Table 9, Figure 17). Particulate phosphorus (calculated from the TP concentration minus the DRP concentration) ranged between 57% and 100% of TP, with a greater percentage of particulate phosphorus observed in the March and April sampling events, compared to the May sampling events (Table 9). Whilst the majority of TP was in particulate form, DRP still generally exceeded the trigger value of 0.005 mg/L (Figure 17).

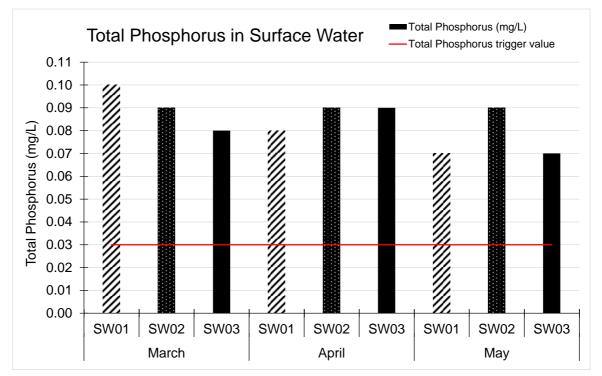


Figure 16. TP in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lagoon centre

Figure 17. DRP in surface water. SW01: Canning River Estuary, SW02: Lagoon channel, SW03: Lagoon centre

17.1.3 Metals and metalloids

Metals that exceeded their respective trigger values included aluminium (total only), copper (total and dissolved) and zinc (total and dissolved) (Table 9). The majority of exceedances occurred mostly in the May 2018 sampling round, except for total aluminium which also exceeded at all sample locations in the March 2018 sampling (Table 9). The exceedances in May are likely due to the "first flush" effect caused by the heavy rainfall during the end of May.

17.1.4 Surface water summary

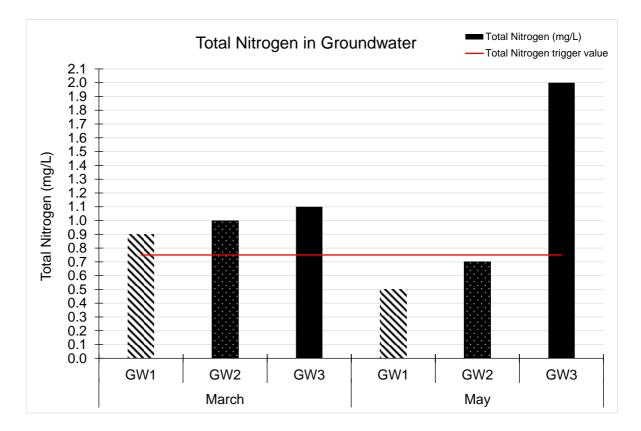
Water quality within the Lagoon was dynamic across the study period. It was likely to be affected by water quality from the Canning River Estuary, stormwater flows after the first flush event, and groundwater charging from the north. TN was below trigger values during all sampling events for locations within the Lagoon, except one event in March 2018 in the Lagoon channel. This was likely due to the Estuary location exceeding the TN trigger value and providing the Lagoon with TN. Ammonia-N exceeded the trigger value at all locations, and was generally always greater in the Estuary than the Lagoon, suggesting the Estuary was a source of ammonia-N for the Lagoon system during that sampling event. NOx was variable across the sampling events, but was greatest after the first flush in May, and may have been impacted by both stormwater concentrations and the concentrations within the Estuary NOx. TP exceeded the trigger values at all locations, and relative concentrations between the Estuary and Lagoon suggest that the Estuary may be a source of TP for the Lagoon.

17.2 GROUNDWATER QUALITY

The sample locations for ground water are denoted by the GW Sample ID. GW01 refers to the eastern bore, GW02 refers to the western bore, and GW03 refers to the north-east bore (Figure 5). Groundwater data was compared to the ANZECC (2000) trigger values for estuaries to analyse the nutrient and metal/metalloid concentrations within groundwater that could migrate into the estuary and increase the risk of adverse impacts (such as algal blooms and toxicity respectively).

17.2.1 Physico-chemical measurements

Groundwater pH was below the lower range of the trigger value at all locations across both sampling events indicating circumneutral to slightly acidic groundwater (Table 10). Dissolved oxygen was well below the acceptable range for estuaries but typical of groundwater systems separated from the atmosphere (Table 10). Total dissolved solids (TDS) were in the "brackish" salinity range (1000 to 2000 mg/L TDS) for all sampling events in GW01 and GW03. TDS concentrations were highly saline (>30,000 mg/L) for GW02 (the western bore close to the Estuary) (Table 10).


17.2.2 Nutrients

<u>Nitrogen</u>

TN generally exceeded the trigger values for estuaries except during May at the GW01 and GW02 locations, however the north-east bore (GW03) still exceeded (Table 10, Figure 18).

Table 10. Groundwater quality data. Orange highlights relate to exceedances of ANZECC (2000) trigger values

Surface water parameter	Unit	SWO	1 (Canning F	River)	SW02 (La	goon near tidal	channel)	SW03 (I	Lagoon oper	n water)	ANZECC (2000) South-
		28/03/2018	24/04/2018	30/05/2018	28/03/2018	24/04/2018	30/05/2018	28/03/2018	24/04/2018	30/05/2018	west Estuaries
Physico-chemical											
Temperature	°C	28.0	19.3	16.4	27.6	19.8	16.4	22.7	20.3	16.1	
pH (Field)	pH unit	8.35	7.03	7.80	8.00	7.24	7.68	7.19	7.57	7.76	7.5 - 8.5
pH (Lab)	pH unit	8.79	7.85	7.47	8.34	7.83	7.45	7.93	7.82	7.42	7.5 - 8.5
Dissolved oxygen	mg/L	-	8.32	-	-	9.00	-	-	11.70	-	
Dissolved oxygen %	%	-	97.1	83.3	-	99.2	86.2	-	173.0	69.9	90 - 110
Salinity	ppt	-	25.7	-	-	21.0	-	-	20.6	-	
Electrical conductivity	mS/cm	51.7	39.5	21.4	51.3	31.7	11.29	51.2	34.3	11.54	
TDS	mg/L	33,100.0	25,730.0	13,663.0	32,800.0	21,020.0	7,338.5	32,700.0	20,620.0	7,371.0	
ORP	mV	37.00	187.00	60.50	-54.00	149.00		96.00	149.00	-	
Secchi Depth	cm	>40	>40	>50	>3	>3	>20	>10	>10	>30	
			•						•		
<u>Nutrients</u>											
Total Nitrogen-N	mg/L	0.90	0.70	0.60	0.80	0.70	0.60	0.60	0.70	0.60	0.75
Ammonia-N	mg/L	0.17	0.08	0.12	0.39	0.06	0.11	0.07	0.06	0.10	0.04
Nitrite-N	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Nitrate-N	mg/L	<0.01	0.04	0.06	0.01	0.03	0.08	<0.01	0.03	0.07	
NOx-N	mg/L	<0.01	0.040	0.060	0.010	0.030	0.080	<0.01	0.030	0.070	0.045
Total Kjeldahl Nitrogen-N	mg/L	0.9	0.7	0.5	0.8	0.7	0.5	0.6	0.7	0.5	
Organic Nitrogen (calculation)	mg/L	0.73	0.62	0.38	0.41	0.64	0.39	0.53	0.64	0.4	
Organic Nitrogen % (calculation)	%	81%	89%	63%	51%	91%	65%	88%	91%	67%	
Total Phosphorus	mg/L	0.10	0.08	0.07	0.09	0.09	0.09	0.08	0.09	0.07	0.03
Dissolved Reactive Phosphorus	mg/L	<0.01	0.020	0.020	0.020	0.030	0.030	0.010	0.020	0.030	0.005
Particulate P (calculation)	mg/L	0.1	0.06	0.05	0.07	0.06	0.06	0.07	0.07	0.04	
Particulate P % (calculation)	%	100%	75%	71%	78%	67%	67%	88%	78%	57%	
Dissolved metal and metalloids											
Aluminium	mg/L	< 0.05	-	<0.01	<0.05	-	<0.01	< 0.05	-	<0.01	0.055
Arsenic	mg/L	< 0.005	-	<0.001	< 0.005	-	<0.001	< 0.005	-	<0.001	0.013
Cadmium	mg/L	<0.0005	-	<0.0001	<0.0005	-	<0.0001	<0.0005	-	<0.0001	0.0002
Chromium	mg/L	<0.005	-	<0.001	<0.005	-	<0.001	< 0.005	-	<0.001	0.001 (CrVI)
Copper	mg/L	<0.005	-	0.005	< 0.005	-	0.002	<0.005	-	0.002	0.0014
Lead	mg/L	<0.005	-	<0.001	<0.005	-	<0.001	<0.005	-	<0.001	0.0034
Nickel	mg/L	<0.005	-	<0.001	<0.005	-	<0.001	<0.005	-	<0.001	0.011
Selenium	mg/L	<0.05	-	<0.01	<0.05	-	<0.01	<0.05	-	<0.01	0.011
Zinc	mg/L	<0.025	-	0.013	<0.025	-	0.020	<0.025	-	0.016	0.008
Iron	mg/L	<0.25	-	0.07	<0.25	-	0.09	<0.25	-	0.09	10
Mercury	mg/L	<0.0001	-	<0.0001	<0.0001	-	<0.0001	<0.0001	-	<0.0001	0.0006
Total metal and metalloids											
Aluminium	mg/L	0.100	-	0.090	0.110	-	0.100	0.140	-	0.120	0.055
Arsenic	mg/L	<0.005	-	0.001	<0.005	-	<0.001	<0.005	-	<0.001	0.013
Cadmium	mg/L	<0.0005	-	<0.0001	<0.0005	-	<0.0001	<0.0005	-	<0.0001	0.0002
Chromium	mg/L	<0.005	-	<0.001	<0.005	-	<0.001	<0.005	-	<0.001	0.001 (CrVI)
Copper	mg/L	<0.005	-	0.004	<0.005	-	0.002	<0.005	-	0.005	0.0014
Lead	mg/L	<0.005	-	<0.001	<0.005	-	<0.001	<0.005	-	<0.001	0.0034
Nickel	mg/L	<0.005	-	<0.001	< 0.005	-	<0.001	<0.005	-	0.001	0.011
Selenium	mg/L	<0.05	-	<0.01	<0.05	-	<0.01	<0.05	-	<0.01	0.011
Zinc	mg/L	<0.025	-	0.015	<0.025	-	0.018	<0.025	-	0.021	0.008
Iron	mg/L	<0.25	-	0.28	<0.25	-	0.33	0.32	-	0.34	
Mercury	mg/L	<0.0001	-	<0.0001	<0.0001	-	<0.0001	<0.0001	-	<0.0001	0.0006

Figure 18. Total nitrogen concentrations in groundwater

Ammonia-N concentrations exceeded the trigger values at all locations in both sampling events, suggesting that groundwater is a potential source of ammonia-N for the Lagoon when groundwater is moving into the Lagoon (Table 10, Figure 19). NOx concentrations only exceeded the trigger values in GW03, which could be due to nitrate-based fertiliser use and subsequent runoff into groundwater in the up gradient urban catchment (Table 10, Figure 20).

Phosphorus

TP concentrations exceeded trigger values at all locations across the two events, and was greatest in the most up gradient bore GW03 (Table 10, Figure 21). DRP concentrations only exceeded trigger values in the western bore GW02, and was not detected in either GW01 or GW03 in either event (Table 10, Figure 22).

17.2.3 Metals and metalloids

Several metal/metalloids exceeded the trigger values in groundwater which included aluminium, arsenic, cadmium, chromium, copper, lead, nickel, zinc and iron (Table 10). GW01 (eastern bore) and GW03 (north-east bore) held the highest metal concentrations, likely affected from the up gradient catchment and impacted groundwater from suburban areas (Table 10). GW02 (western bore) is located close to the Estuary and the Lagoon, and is likely affected by the water quality in either location, and as such had a lower metal loading (Table 10).

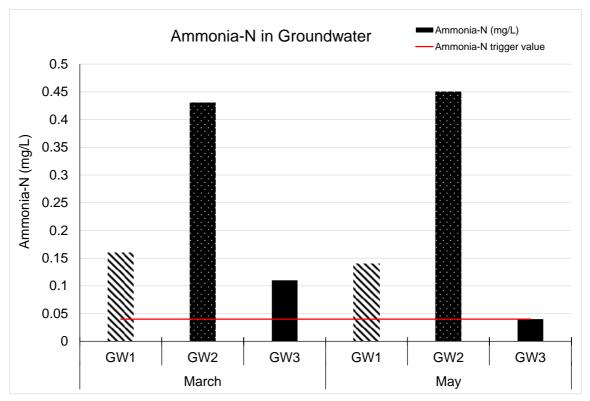


Figure 19. Ammonia-N concentrations in groundwater

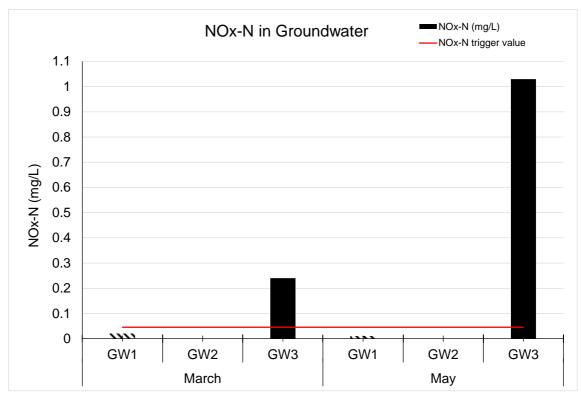


Figure 20. Nitrate/nitrite (NOx) concentrations in groundwater

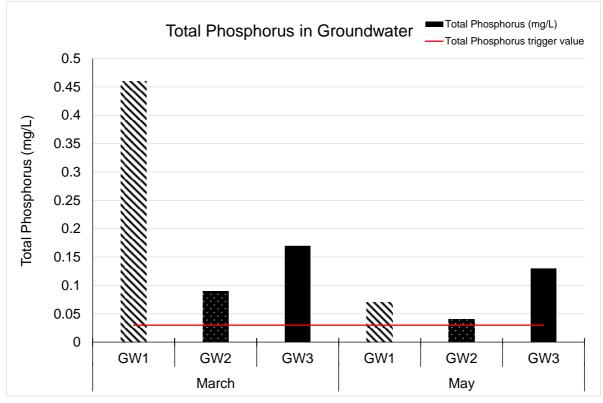


Figure 21. Total phosphorus concentrations in groundwater

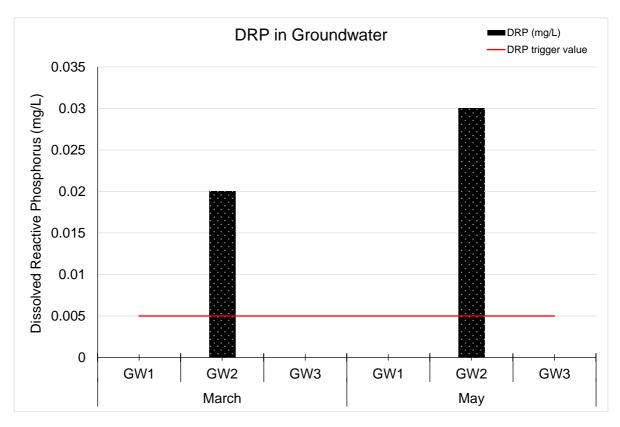


Figure 22. Dissolved reactive phosphorus (DRP) concentrations in groundwater

17.2.4 Groundwater summary

Nutrient concentrations were generally elevated across the groundwater bores compared to the trigger values for estuaries, and indicated that groundwater inputs could enrich the Lagoon if groundwater flows into the Lagoon. Groundwater quality in GW03 and GW01 is likely impacted by the northern catchment and hydraulically up-gradient water quality which then enters the Lagoon from the northern face the groundwater/Lagoon interface. Metal/metalloid concentration were elevated in GW03 and GW01.

17.3 STORMWATER QUALITY

The sample location for stormwater was at the SD sample location shown in Figure 5.

17.3.1 Physico-chemical parameters

Stormwater quality was assessed against the ANZECC (2000) trigger values for south-west estuaries as the stormwater drain sampled directly discharges into Salter Point Lagoon and by extension, the Canning Estuary. The pH measured at SD1 (stormwater drain) were below the minimum pH of 7.5 for estuaries, but remained circumneutral. Stormwater may affect and lower the pH of the Lagoon system when discharging into the Lagoon. Stormwater was considered highly saline, given a TDS of 14,911 mg/L indicating possible mixing with lagoon water which was above the pipe obvert level at the time of sampling. Stormwater had a desirable dissolved oxygen content at 96.2% (Table 11). Stormwater had oxidising conditions with an ORP of 174.2 mV (Table 11).

17.3.2 Nutrients

<u>Nitrogen</u>

The TN concentration in stormwater <u>exceeded the trigger value of 0.75 mg/L at 1.0 mg/L</u>, with the majority of nitrogen made up of organic nitrogen (58%), followed by ammonia-N (32%) and NOx (10%) (Table 11). <u>Ammonia-N and NOx exceeded their respective trigger values</u> of 0.04 mg/L and 0.045 mg/L with concentrations of 0.32 mg/L (eight-fold exceedance) and 0.10 mg/L (two-fold exceedance) respectively. Stormwater was a source of nitrogen that is above the ANZECC (2000) trigger values for estuaries.

Phosphorus

<u>TP concentrations exceeded the 0.03 mg/L trigger value by five-fold</u> at a concentration of 0.15 mg/L, and <u>dissolved reactive phosphorus exceeded the 0.005 mg/L trigger value by ten-fold</u> with a concentration of 0.05 mg/L. Stormwater was a source of phosphorus that was well above the ANZECC (2000) guidelines for estuaries.

17.3.3 Metals and metalloids

Several metal/metalloids were detected in stormwater during the May sampling event, which included aluminium, arsenic, cadmium, chromium, copper, lead, nickel, zinc and iron.

Table 11. Stormwater quality data. Orange highlights relate to exceedances of ANZECC (2000) trigger values

Stormwater parameter	Unit	SD1 (Stormwater drain) 25/05/2018	ANZECC (2000) South-west estuaries
Physico-chemical			
Тетр	°C	15.0	
pH (Field)	pH unit	6.51	7.5 - 8.5
pH (Lab)	pH unit	7.02	7.5 - 8.5
DO	%	96.2	90 - 110
Salinity	ppt	13.9	
Electrial conductivity	mS/cm	22.9	
TDS	mg/L	14,911.0	
ORP (mV)	mV	174.2	
Nutrients			
Total Nitrogen-N	mg/L	1.00	0.75
Ammonia-N	mg/L	0.32	0.04
Nitrite-N	mg/L	<0.01	0.04
Nitrate-N		0.10	
NOx-N	mg/L	0.10	0.045
Total Kjeldahl Nitrogen-N	mg/L	0.10	0.045
Organic Nitrogen (calculation)	mg/L	0.58	
Organic Nitrogen % (calculation)	mg/L %	0.58	
Total Phosphorus		0.38	0.03
Dissolved Reactive Phosphorus	mg/L mg/L	0.05	0.005
Particulate P (calculation)	mg/L	0.10	0.005
Particulate P % (calculation)		0.10	
<u>Dissolved metals and metalloids</u> Aluminium	mg/L	<0.01	0.055
Arsenic	mg/L	<0.001	0.013
Cadmium	mg/L	0.0004	0.0002
Chromium	mg/L	< 0.001	0.001 (CrVI)
Copper	mg/L	0.0030	0.0014
Lead	mg/L	< 0.001	0.0034
Nickel	mg/L	< 0.001	0.011
Selenium	mg/L	<0.01	0.011
Zinc	mg/L	0.079	0.008
Iron	mg/L	< 0.05	10
Mercury	mg/L	<0.0001	0.0006
Total metals and metalloids			
Aluminium	mg/L	0.160	0.055
Arsenic	mg/L	0.001	0.013
Cadmium	mg/L	0.0004	0.0002
Chromium	mg/L	<0.001	0.001 (CrVI)
Copper	mg/L	0.0050	0.0014
Lead	mg/L	0.003	0.0034
Nickel	mg/L	0.001	0.011
Selenium	mg/L	<0.01	0.011
Zinc	mg/L	0.092	0.008
Iron	mg/L	0.16	
Mercury	mg/L	<0.0001	0.0006

SYRINX ENVIRONMENTAL

Of these common stormwater contaminants, aluminium (total only), cadmium (total and dissolved), copper (total and dissolved) and zinc (total and dissolved) exceeded their respective trigger values (Table 11). Stormwater was a source of metal contamination, and over time may load the Lagoon sediments and potentially the water column with metal contaminants.

17.3.4 Stormwater summary

Stormwater was a source of nitrogen and phosphorus with levels well above the ANZECC (2000) guidelines for estuaries. Stormwater was also a source of metal contamination with aluminium, cadmium, copper and zinc concentrations greater than toxicant trigger values. It should be noted that the stormwater sampling event was one of the first rainfall events for the winter season (undertaken in late May 2018), and may have contained an elevated "first flush" level of nutrients and metals. Over time, stormwater may load the Lagoon sediments and water column with nutrients and metal contaminants.

18.0 SEDIMENT QUALITY

18.1 PHYSICO-CHEMICAL PARAMETERS

The pH(Field) measurements of the Estuary and Lagoon Channel sediments were circumneutral at 7.8 and 7.5 respectively (Table 12). The sediment within the Lagoon centre was slightly alkaline at pH(Field) 8.4 (Table 12). When all sediments were rapidly oxidised during the pH (Fox) test, the resultant pH(Fox) values were highly acidic, (pH < 3) and evoked moderate to strong reactions (Table 12). The results of the pH(Fox) tests were highly suggestive of <u>potential acid sulfate material</u> as described in the *Identification and investigation of acid sulfate soils and acidic landscapes* by DER (2015). As such, disturbance of Lagoon sediments, such as by dredging or any form of aeration of the sediments, would result in a dramatic pH shift towards an acidic environment. This in turn would rapidly mobilise toxic metal and metalloids from sediment, likely impacting on flora and fauna.

18.2 METAL AND METALLOIDS

No metal or metalloid parameter at any sample location exceeded the ANZECC (2000) ISQG-Low trigger values for sediments (Table 12), and as such current concentrations are unlikely to result in adverse effects on sediment ecological health, should the sediments remain undisturbed. Metal and metalloid concentrations in the Estuary sediment sample were the lowest in comparison to the Lagoon channel (second highest) and the centre of the Lagoon (greatest concentration of metal and metalloids). Given the relatively elevated aluminium, iron, arsenic, copper, lead and zinc concentrations within the centre Lagoon sediment (SED3, Table 12) compared to the channel and Canning Estuary, disturbance of this sediment (and subsequent change to acidic pH) would mobilise these metals and metalloids. These contaminants may then mobilise to the channel (SED2) and Canning Estuary (SED1), where concentrations are above the existing levels, and create further contamination of these areas. This is not withstanding the direct effect of metal and metalloid toxicity on the flora and fauna within the Lagoon which may be significant and irreversible.

Table 12. Sediment quality data. Orange and red highlights relate to exceedances of ANZECC (2000) and DER (2015) trigger values respectively

Sediment Parameter	Unit	SED1 (Canning River) 28/03/2018	SED2 (Lagoon channel) 28/03/2018	SED3 (Lagoon Centre) 28/03/2018	ANZECC (2000) Sediment ISQG-Low	Acid Sulfate Soil Guidelines (DER, 2015)
<u>Physico-chemical</u>						
pH (Field)	pH unit	7.8	7.5	8.4		≤ 4
pH (Fox)	pH unit	2.6	2.7	2.4		< 3
Reaction Rate	Reaction Unit	2 - Moderate	2 - Moderate	3 - Strong		
Moisture Content	%	94.6	92.8	48.5		
Metal and metalloids						
Aluminium	mg/kg	160	590	2860		
Iron	mg/kg	410	1580	8250		
Arsenic	mg/kg	<1.00	<1.00	3.73	20	
Cadmium	mg/kg	<0.1	<0.1	0.2	1.5	
Chromium	mg/kg	<1.0	1.3	7.2	80	
Copper	mg/kg	<1.0	2.9	11.7	65	
Lead	mg/kg	<1.0	2.9	14.6	50	
Nickel	mg/kg	<1.0	<1.0	3	21	
Selenium	mg/kg	<0.1	<0.1	0.4		
Zinc	mg/kg	5.1	17.8	81.9	200	
Mercury	mg/kg	<0.01	<0.01	0.03	0.15	
Nutrients						
Total Nitrogen	mg/kg	490	970	1460		
Total Kjeldahl Nitrogen	mg/kg	490	970	1460		
Organic Nitrogen (calculation)	mg/kg	490	970	1460		
Organic Nitrogen % (calculation)	%	100%	100%	100%		
Ammonia-N	mg/kg	<20	<20	<20		
Nitrite-N	mg/kg	<0.1	<0.1	<0.1		
Nitrate-N	mg/kg	<0.1	<0.1	<0.1		
NOx-N	mg/kg	<0.1	<0.1	<0.1		
Total Phosphorus	mg/kg	71	168	172		
Total Organic Carbon	%	3.69	6.98	5.77		

18.3 NUTRIENTS

The nutrient data from sediment samples (Table 12) shows that all nitrogen based nutrients were in organic form, likely contained within sludge and the associated microbial life. No mineral forms of nitrogen, such as ammonia or nitrate/nitrite were detected, which suggests that the availability of nitrogen based nutrients across the sediment locations was in a balance between decomposition of organic nitrogen and release of nitrogen nutrients for growth, and large quantities of readily available forms of nitrogen for growth were not present. Total phosphorus concentrations were detected, and were highest within the Lagoon centre.

18.4 SEDIMENT SUMMARY

Generally speaking, the sediments within the Canning River Estuary, Lagoon channel and Lagoon centre were below the trigger values for metals and metalloids in sediment, and did not have detectable levels of mineralised nitrogen (readily available nutrients). It was clear that the sediments within the Lagoon centre were largely a sink for organic nutrients and metals/metalloids in comparison to the Lagoon channel and Estuary sediment locations. This was likely influenced by the hydrology of the Lagoon, and inputs from stormwater and groundwater. The results of the pH(Fox) tests were highly suggestive of <u>potential acid sulfate</u> <u>material</u> and disturbance of Lagoon sediments, such as by dredging or any form of aeration of the sediments, would result in a dramatic pH shift towards an acidic environment. This in turn would rapidly mobilise toxic metal and metalloids from sediment, likely impacting on flora and fauna. Given the results of the pH (field) and pH(Fox) tests and the balance of mineral to organic nitrogen, sediments would likely act as a source of nutrients and metals/metalloid contamination if disturbed.

19.0 PRIMARY PRODUCTION

19.1 BENTHIC ALGAE

Originally, residents had raised concerns about the extensive mats of filamentous algae observed in 2013 causing impacts to the health of the Lagoon. The mats had dislodged from the sediment and floated to the surface (Figure 23). This is typical of benthic macroalgae. They are unattached and when conditions are optimal they produce large amounts of carbohydrates and become buoyant. On examination, microscopically, the mats were a collection of various filamentous forms, the dominant being green algae *Cladophora* and *Chaetomorpha* species. Other taxa present were typical of the estuarine benthos (the community of organisms that live on or near the sediment of aquatic systems) such as filamentous cyanobacteria and diatoms living epiphytically on the filaments.



Figure 23. Free-floating filamentous mats, Salter Point Lagoon, December 2016

Both *Chaetomorpha* sp. and *Cladophora* spp. are present across many of the wetlands on the Swan Coastal Plain and within the shallow Lagoons of the Swan - Canning Estuary. They are more obvious during the spring and summer months when conditions such as light intensity and warmer waters favour their growth (DoW, 2010). They belong to the Chlorophyta (green algae); Family Cladophorophyceae (ABRS systematics) (McCarthy and Orchards, 2007). They are non-toxic and may be referred to as drift algae – unattached macroalgae that are subject to the movement of the surface water. The cosmopolitan taxon, *Chaetomorpha linum*, is common in the Estuary (DoW, 2010). Due to its high capacity for nutrient uptake and growth (Hauxwell et al., 2003) *Chaetomorpha* species will proliferate during the warmer months. In areas of low hydrodynamic activity or quiescent waters (Hoffle et al., 2012) they can form large floating mats which become more prominent as the water levels decline. In terms of total biomass, the green filamentous macroalgae usually account for 40% to 85% of total biomass in estuaries in SW Australia during the warmer months (Hillman et al., 2000). The importance of macroalgae in maintaining the ecological processes in the Swan-Canning Estuary is well understood (DoW, 2010).

Drift algae have a boom-and-bust lifecycle and supply rapidly decomposing organic material to the sediment (Pedersen et al., 2005). Odour complaints will typically come from this decomposition and have been documented from the Swan Estuary since 1870 (Brearley, 2005; Hodgkin and Vicker, 1987). Wetlands in Western Australia undergo periods of low hydrological flow during the summer

months with many drying. This is a natural part of their hydrocycle with many of the resident aquatic biota require periods of drying to fulfil their lifecycles.

During this study benthic microbial mats were also observed on the surface of the Lagoon sediment. The mats were identified as the cyanobacterium, *Microcystis botrys*. In Australia this taxon is not considered to be harmful (NRMMC, 2005). While normally a freshwater taxon, *M. botrys* is often found in slightly saline environments the large quantities of mucilage they produce producing a slightly less saline microenvironment allowing them to exist in a normally saline habitat. This mucilage also provided a habitat for other biota with a high diversity of diatoms and microinvertebrates present in the mats.

The *M. botrys* mats covered 100% of the Lagoon sediment during the field study. The mats were not cohesive and readily dispersed when manipulated. During the field study small mat fragments of the mats were observed dislodging from the sediment and floating to the surface (Figure 24) and out of the Lagoon via the inlet/outlet channel with the ebb current.

Figure 24. Benthic mat and floating dislodged fragments of *Microcystis botrys* (24th April 2018)

The mat fragments covered 0% of the Lagoon water surface on the 28 March 2018 and approximately 25% on 24 April 2018 and <5% on 30 May 2018. Although the presence of the mat was obvious while out in the Lagoon in the canoe, it was not easily visible from the shore.

Algal and cyanobacterial mats (benthic microbial communities) are important components of aquatic systems. They are the building blocks of complex food webs and support large numbers of invertebrates and higher order fauna. Both mats types form the benthos of the Lagoon. When the waters are calm, resulting in more light penetration (limited turbidity) and warmer temperatures this will increase their ability to uptake phosphorous and ammonium nitrogen and therefore grow quickly. Any disturbance of the resulting dense mats will cause them to float and they become drift algae. The filamentous forms are more visible as they are more cohesive and have a high cellulose content

because of the taxa present (dominated by green filamentous forms such as *Cladphora*). The *Microystis* spp are coccoid Cyanobacteria and are less able to form cohesive mats.

Both types of mats produce habitat (substrate) for other algal groups, in particular, diatoms. This in turn provide a valuable food source for many grazers such as crustaceans. Diatoms have a high oil content and are easily consumed. The mats can also produce a micro climate that is slightly less saline and therefore habitable. In terms of habitat they provide additional areas that increases the heterogeneity of habitats in the Lagoon leading to greater diversity and higher order consumers such as waders and raptors. Drift algae, globally, are recognised as a valuable habitat and the base of complex food webs. They contribute to habit complexity in surface waters and provide a substratum for various organisms to complete various stages of their life-cycles, in-particular invertebrates and fish. They also play a role in the redistribution of organisms in estuaries and the ocean (Kingsford, 1995) and algal spores (Reed at al., 1988). A study by Astill and Lavery (2001) found that macroalgae material (including the nutrients absorbed) is lost primarily through water movement with winter freshwater flows. In a period of 36 days up to 20 % of the tagged macroalgae were lost from Salter Point to the Estuary.

19.2 PHYTOPLANKTON

The phytoplankton of a waterbody is the assemblage of photosynthetic organisms that are subject to distribution by water movement (Wetzel, 2001). Generally, phytoplankton is the term assigned to the microalgae and cyanobacteria that are unattached or "free-floating" in the water. They are the primary producers and respond to any modifications to nutrient availability. The density (number of cells per mL of water) and the taxa (species) present in a waterbody can be used as a measure of ecological health (Deeley and Paling, 1999).

Two of the three sampling sites (SW02 and SW03) were located within Salter Point Lagoon and the third (SW01) located in the Estuary (Figure 5). The phytoplankton within the Lagoon showed little variation between the two sites, while SW01 showed slight variation in terms of dominant taxa (Table 13). Overall the community structure (percentage composition of the phytoplankton taxonomic groups) was similar for each of the sampling periods (March to May 2018) (Figure 25).

The taxa (phytoplankton) were all typical of an estuarine system with a mixture of groups. Absent were the cyanobacteria (blue-green algae) which is characteristic of saline systems. The dominance of the diatoms in late April through to May is typical of the phytoplankton succession in the Estuary (Brearley, 2005).

Table 13. Phytoplankton from Salter Point Lagoon sampling sites (March to May 2018). Enumerated in cells/mL.

Group	Таха	28/03/2018			24/04/2018			30/05/2018		
		SW01	SW02	SW03	SW01	SW02	SW03	SW01	SW02	SW03
Diatoms	Chaetoceros spp.	225	25	25	914	963	1500			
	Cyclotella spp.	50			25	25	25		25	25
	Rhizosolenia spp.		5	10						
	Skeletonema spp.				7750	4500	6000		25	
	Thalassiosira spp.					50	225	425	650	300
	Navicula spp.		100					25		
	Nitzschia spp.	25	50	50			25	25	25	75
	Synedra spp.		50							
	Thalassionema spp.		15	5						
Chlorophyta	Carteria spp.	25								
	Chlamydomonas spp.	75	100	25	25			25		25
	Dictyosphaerium spp.								300	350
	Kirchneriella spp.					25				25
	Monoraphidium spp.								50	50
	Oocystis spp.	25								
	Pyramimonas spp.	25			125		25			
	Scenedesmus spp.								50	75
Cryptophyta	Chroomonas spp.	722	50		125			175	350	375
	Cryptomonas spp.	75	125	25				175	300	375
Euglenophyta	Euglena spp.		25			25		100		
	Trachelomonas spp.							5		
	Eutreptiella spp.					125	100	25		
Dinophyta	Ceratium spp.		25							
	Gymnodinium spp.	125	125	150	25	75	5			
	Peridinium spp.	200	75	100	25		100			
	Protoperidinium spp.						50			
Total Algae Count		1572	770	390	9010	5790	8060	980	1780	1680

Phytoplankton data collected from the Salter Point weekly routine sampling site (*Swan-Canning Clean-up Program Action Plan*) was comparable to the Lagoon phytoplankton data, taking into account variation in sampling methods. Diatoms dominated the Estuary in early Autumn and cryptophytes increasing later in May (Source: PEU, DWER, 2018 unpublished data). The trend in the phytoplankton community was typical to that seen in the Canning River Estuary in previous years (DoW, 2016). In terms of indicators of ecosystem health, the community structure was diverse and no potentially harmful taxa were identified. In April the chain forming diatom, *Skeletonema costatum*, dominated the sample. This was typical seasonal succession in the Estuary and of no concern. The phytoplankton data collected during the study did not indicate eutrophic conditions nor a degraded system. The community structure reflected that in the Estuary at time of sampling, indicating a connection between both systems.

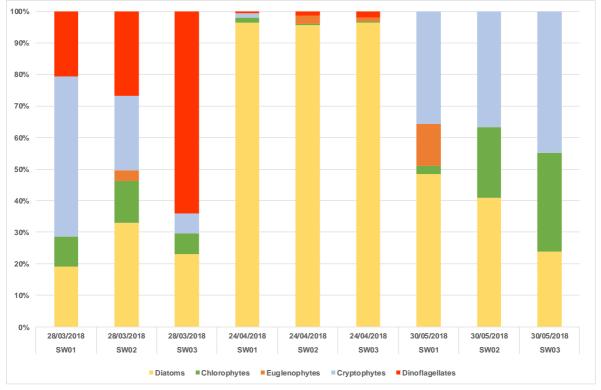


Figure 25. Phytoplankton community composition of the Salt Point Lagoon study area (March to May 2018)

19.3 SUMMARY OF PRIMARY PRODUCTION

The Lagoon supports an algal and cyanobacterial community characteristic of estuarine systems. The community structure is reflective of the seasonal conditions present in the Lagoon and correspond to those in the Canning River Estuary. During this study the phytoplankton community consisted of saline species with diatoms dominating in April and continuing through to the end of May. Species diversity was similar at all sites, the Estuary site (SW01) had a slightly different species composition than the Lagoon sites however, the groups were the same. None of the taxa identified, nor their densities, were of concern, indicating a healthy system.

The benthic microbial communities were also identified in the Lagoon and varied temporally. Mats of filamentous forms dominated by the green macroalgae, Chaetomorpha sp. and Cladophora spp., were identified in 2016. In 2018, the benthos was covered in a mat produced by the cyanobacterium, Microcystis botrys, and was less cohesive. This species is not considered a toxin producer in Australia. Both mats types form the benthos of the Lagoon and are important habitat for many epiphytic algae and micronvertebrates that live in the Lagoon. They form the basis of the food chain. Both types are readily dislodged from the surface of the sediment and become buoyant, floating on the surface of the water.

20.0 LAGOON VEGETATION CONDITION

Based on the recent site assessment, Salter Point Lagoon supports four major vegetation communities that are distributed along the hydrological gradient:

- 1. Closed Low Shrubland of Sarcocornia quinqueflora over Herbland of Suaeda australis and Samolus repens with Scattered rushes of Juncus kraussii.
- 2. Closed Rushes of *Juncus kraussii* with Scattered trees of *Casuarina obesa* and very open grasses of *Sporobolus virginicus*.
- 3. Closed sedgeleland of Schoenus subfascicularis with Scattered grasses of Sporobolus virginicus;
- 4. Closed herbland of *Phlebocarya ciliata* and *Dasypogon bromeliifolius*, open rushes of *Alexgeorgea nitens* and Scattered mixed low shrubs and scattered trees of *Nuytsia floribunda;*
- 5. Mixed shrubland and herbland (revegetated) of the upland areas.

Vegetation condition of the Lagoon is predominantly in very good to excellent condition and this vegetation comprises of Juncus kraussii rushes and Sarcocornia quinqueflora and Suaeda australis samphire saltmarsh. The upland areas are of variable condition and have been impacted by clearing, trampling and weeds. Several areas have been revegetated to improve overall stability of the sand spit, and to increase diversity and amenity of the area. To distinguish between areas that have been revegetated and those that are remnant, the revegetated areas have been hatched in Figure 26.

The remnant vegetation (which occupies 76% of the site overall, with 53% in Excellent condition) mostly surrounds the Lagoon basin where no vegetation clearing has occurred since European settlement. The remainder of the remnant vegetation is in Very Good (4%) or Degraded (4%) condition. Approximately 2% of the site has been labelled as Completely Degraded due to lack of indigenous to site flora, and presence of weeds such as Couch (*Cynodon dactylon*). Regular maintenance and weed control of the reserve has resulted in low weed cover and an overall improvement in vegetation condition rating.

The revegetation efforts particularly those along the western side of the spit have resulted in improved vegetation cover and condition, however anthropogenic influences such as trampling of vegetation combined with the drying climate, storm surges and salt incursion continues to have an impact on plant establishment particularly to the south western edge of the site.

Figure 26. Salter Point Lagoon vegetation condition map

To investigate the extent of changes in vegetation condition as a result of water movements in and out of the Lagoon, all available aerial photographs were examined to note changes in vegetation cover in addition to changes noted during maintenance and restoration works conducted by Syrinx between 2012 – 2018.

Major vegetation clearing activities that occurred in the Salter Point area particularly during late the 1950s to mid 1960s (Figure 27) have mostly impacted the upland areas of the site. While the upland areas have recovered slightly, most areas have succumbed to weeds, introduction of fill to elevate Salter Point Parade, climate change, planting of flora species that are not native to site (e.g. *Acacia cyclops, Scaevola crassifolia* etc.) and increased public visitation to the spit reducing overall condition.

Figure 27. Salter Point Lagoon and surrounding areas 1965 aerial image (left) and the 2018 image (right) showing vegetation extent and areas of vegetation degradation (Source: Landgate, 2014 and Nearmaps, 2018)

Unlike upland areas, vegetation bordering the Lagoon water body did not experience changes until more recently. Since 2006 there has been a steady increase in expansion of saltmarsh community in response to lower water levels in the Lagoon. This expansion is mostly confined to the north west edge of the Lagoon water body consistent with bathymetry and the likely groundwater discharge point.

To the north of the Lagoon three small salt pans have formed where previously (2006) they were vegetated with rushes. Disappearance of rushes is most likely a result of salt build-up due to above average temperatures, low tides, and low fresh water flushing which generally stimulates germination of *Juncus* seed and its active growth. Small salt pans like this appear in the most saltmarsh communities and hence have not been given a Completely Degraded ranking but rather incorporated in the overall condition of bordering rushes and samphires.

Further to salt pan formation, sedges of *Schoenus subfascicularis* which grow in transition of *Juncus* rushes to dampland vegetation communities (incorporating scattered shrubs and *Xanthorrhoea* spp over closed herbland of *Phlebocarya ciliata* and *Dasypogon bromeliifolius* and. Scattered trees of *Allocasuarina fraseriana* and *Nuytsia floribunda*) are showing signs of water stress. This is most likely a result of reduced groundwater levels / freshwater input brought about by lower rainfall and higher than average temperatures particularly since 2006 as well as well as likely salt incursion into the soil profile.

The species recorded during traverses of the site are presented in a tabular form within Appendix 7.

Figure 28. Iconic Western Australian Christmas Tree (*Nuytsia floribunda*) at the entrance to Salter Point Lagoon

21.0 FAUNA

Based on the site inspection, the area can be seen to provide a range of environments for fauna. These include:

- Riverine shallow;
- Very limited shoreline roosting as most of the shoreline is densely vegetated with rushes;
- Roosting opportunities for some waterbirds in dead she-oaks along the shoreline;
- Very dense rushes that provide shelter for cryptic waterbirds; where flooded these also provide shelter for small fish and aquatic invertebrates, and may even have a nursery function;
- Extensive shallows in the Lagoon for foraging; fish and waterbirds; and
- Some upland shrubland and woodland on sandy soil.

Of these environments, the extensive shallows in the Lagoon are very unusual for the Canning River Estuary, and upland vegetation is limited in the area in general. The small area of sandy shoreline where birds roost is also limited along this shoreline. It is also the location where the public can access the Estuary and is thus subject to disturbance.

Fauna species returned from databases are presented in Appendix 8. Each group is discussed below.

21.1 INVERTEBRATES

No invertebrates were returned from databases. The databases generally only include invertebrate species of listed conservation significance (i.e. listed under Federal or State legislation); there are few of these and they are usually not recorded from urban areas that lack extensive native vegetation. If a larger search area had been used that included reserves in the Armadale and Jandakot area, significant insects such as some native bees and the Graceful Sun-moth might have been returned. However, there is a very low likelihood of such species in the small and degraded upland vegetation of the site.

Despite this, the site will support a moderately rich invertebrate fauna, in particular when compared with nearby suburbs. As noted above, the Lagoon and adjacent Estuary will also support aquatic invertebrates, and flooded vegetation along the shoreline and Lagoon may provide shelter for aquatic invertebrates. This could include larval prawns. Shrimps, probably the Glass Shrimp *Paleemonetes australis*, were present in the entrance channel to the Lagoon on 23 February 2018.

The aquatic invertebrate assemblage may be interesting as there is freshwater seepage into the Lagoon. Therefore, while most aquatic invertebrates will be estuarine, there may be some freshwater species present where freshwater occurs around the Lagoon. Microscopic examination of the free-floating mats and the benthos dominated by *Microcsystis botrys* found a large number of rotifers, cladocerans and ciliates.

21.2 FISH

Fish species returned from databases are listed in Appendix 8. Most are estuarine so would occur in the adjacent Estuary and occasionally in the Lagoon. The five species seen on 23 February 2018 were in the entrance channel except for the Mosquitofish, which was seen in brackish pools amongst the rushes on the landward side of the Lagoon. This is a fresh to brackish species which suggests some freshwater seepage even at the end of summer. The Leopard Fish is very unlikely to be present as it is reliant on permanent freshwater.

The Lagoon provides an extensive shallow foraging area for fish and flooded rushes on the shoreline and especially in the Lagoon, where they are sheltered, may provide shelter for fish fry.

21.3 FROGS

The desktop review returned nine frog species, of which four had been recorded by Siemon (2000) in the Salter Point/Waterford area (Appendix 8). The Siemon records are old and without surveys it cannot be predicted reliably which species may still be present, or even which were recorded at Salter Point as opposed to elsewhere in the Waterford area. The Moaning Frog and Banjo Frog are terrestrial outside the breeding season, and the Turtle Frog is exclusively terrestrial, so these may survive in the upland areas. The Motorbike Frog regularly survives in gardens so may occur nearby and individuals could visit the area. All but the Turtle Frog require freshwater for breeding, and it is not clear if freshwater seepages are sufficient to provide this habitat.

None of the frogs is of listed conservation significance, but the Quacking Frog, Turtle Frog and Crawling Toadlet have the most limited distributions in the urban area. At least in the 1990s, there was a thriving population of the Quacking Frog at Cygnia Cove (M. Bamford *pers. obs.*), but that site has an extensive freshwater wetland. The likelihood of any of these three species being present at Salter Point is considered low.

21.4 REPTILES

The desktop review returned 21 reptile species, of which eight had been recorded by Siemon (2000) in the Salter Point/Waterford area and three were observed during 2018 site visits (Appendix 8). Reptiles display a high degree of persistence even in small remnants of native vegetation within Perth urban landscapes (e.g. Bamford and Calver 2012), so an assemblage of around 20 species is quite possible. This could only be confirmed through survey work. The Long-necked Tortoise is aquatic and probably only an occasional visitor to the adjacent Estuary and Lagoon, while most species would be largely restricted to upland vegetation with sandy soil. The Three-lined Skink, Mulch Skink and Tiger Snake will utilise vegetation along the margins of wetlands.

Most of the reptile species are widespread, albeit patchily distributed in urban areas, but the Perth Lined Lerista is listed as Priority 4 by the DBCA because it has a restricted distribution that is extensively overlapped by urban development. It seems to be restricted to sandy soils in stabilised dunes in woodland, but there may be sufficient habitat in the Salter Point area.

21.5 BIRDS

The desktop review returned 116 bird species, of which 52 are waterbirds. Siemon (2000) recorded 61 species in the Salter Point/Waterford area and 21 species were observed during 2018 site visits (Appendix 8). Waterbirds were counted on 23 February 2018 and while numbers were low, the presence of 13 Black Swans was notable. The mobility of birds means that many species can be recorded at a site, but for a lot of these it may just be a case of a single bird flying past. Of importance is the function of the site for birds: does it support a population, provide a stepping stone to move through the landscape, or provide a particular important feature such as a roosting location.

Important features of Salter Point for birds are:

- Part of a corridor along the Estuary for small bushbirds such as the Splendid Fairy-wren and honeyeaters. The presence of some remnant upland vegetation, including banksias, is important in the local context.
- Provides a large area of rushes and sheltered shallow water for shelter and foraging (and possibly breeding) by waterbirds such as crakes and rails, some ducks and herons/egrets/spoonbills. A Pelican was reported feeding in the Lagoon during a site visit in 2018 (R. Tamanovic, pers. comm., Figure 29). The Lagoon is an important aspect of this feature.
- The Estuary shoreline at the mouth of the Lagoon provides a small roosting area for waterbirds.
- Dead trees close to the shoreline provide roosting sites for birds such as the Eastern Osprey and cormorants.

The bird assemblage includes some species of conservation significance, (Appendix 8), with 11 species listed under conservation legislation (CS1 in Appendix 8), and 18 species of local conservations significance (CS3 in Appendix 8). These CS3 species are generally species that have declined markedly in the urban area as discussed by Dell and Banyard (2000).

Seven of the CS1 species (Glossy Ibis, Eastern Osprey, Common Greenshank, Wood Sandpiper, Common Sandpiper, Grey Plover and Crested Tern) are waterbirds which will forage along the adjacent estuary and over/in the Lagoon, but will be only occasional visitors in small numbers due to the small area of habitat available. An Osprey and a Common Sandpiper were present on 23 February 2018. The remaining CS1 species will also be only occasional visitors, including Carnaby's Black-Cockatoo (few birds observed feeding *Banksia menziesii* and *Acacia saligna* in 2018; R. Tomanovic pers. comm.). Among the CS3 species are eight small bushbirds that are sedentary and rely heavily on remnants and corridors of native vegetation to persist in the urban landscape. Only one of these, the White-cheeked Honeyeater, was observed on 23 February 2018, but Siemon (2000) observed Inland Yellow-rumped Thornbill in the Salter Point/Waterford area, and there are records of the Splendid Fairy-wren at Cygnia Cove and just upstream of Leach Highway (M. Bamford and P. Agar, pers. obs). These species may not be resident at Salter Point, but are very likely to use it to move through the landscape. The remaining CS3 birds are also likely to be occasional or even regular

visitors in small numbers, but include waterbirds and birds of prey that are generally wide-ranging and less dependent upon connectivity in the landscape.

Figure 29. Black Swans (and a single Australian Pelican) that had been roosting at the mouth of the Lagoon.

Figure 30. View from the Estuary back into the Lagoon with a single Eastern Great Egret foraging in the channel.

Figure 31. Carnaby's Black-Cockatoo feeding on Acacia saligna

Figure 32. Pelicans and other waterbirds feeding on school of mullet

21.6 MAMMALS

The desktop review returned 13 mammal species, of which five are introduced (Appendix 8). This does not include marine mammals with dolphins occasionally reported from the nearby estuary, but they are independent of Salter Point and the Lagoon. Siemon (2000) recorded six mammal species in the Salter Point/Waterford area and the only mammal record in 2018 was of the Cat; probably a domestic animal but feral Cats are likely to be present also.

Mammals such as the Quenda, Brush-tailed Possum and bats are sufficiently mobile that they may be able to use the Salter Point area as part of a corridor for movement, and in combination with the extended reserve along the estuary populations may be able to persist. Siemon did report the Quenda but the species is usually easy to detect due to its distinctive foraging holes, and it appeared to be absent at the time of the 2018 inspection. Specialised surveys would be required to confirm the presence of most bat species. The majority of mammals would use the remnant dryland vegetation but the dense rushes would provide shelter for the Quenda and rodents, while the Rakali is semi-aquatic and would use the Lagoon, adjacent Estuary and shorelines. The Rakali is one of two mammal species listed as Priority by the DBCA (the other being the Quenda), and it still occurs along the Canning Estuary (Trocini et al.,2015).

PART 4: KEY FINDINGS AND MANAGEMENT RECOMMENDATIONS

22.0 SUMMARY OF KEY FINDINGS

This study indicates that the most likely cause of the periodic algal blooms (floating mats) is low water levels in the Estuary and reduced flushing of the Lagoon. This issue was first noticed by residents in 2016, but presumably has occurred intermittently over time, during periods of low astronomically generated tides occurring over inter-annual timescales and where drying cycles predominate. Given the trajectory is towards a drying climate, at least for a further 20 to 50 or so years (Semeniuk and Semeniuk, 2013), these episodes are likely to become more frequent.

In general, the filamentous algal issue is not of concern to the environmental health of the Lagoon or to human health, but rather is one of aesthetic concern. Notwithstanding this, there are point sources of pollutants that clearly 'feed-the system' and add to poor water quality and the potential for algal blooms.

The key findings of the study for each study element are summarised below:

22.1 LAGOON MORPHOMETRY AND PROCESSES

- The Lagoon bathymetry was very shallow and predominantly ranged from 0.17 m to 1.0 m deep with depth of water dependant on the tide.
- There was a thick layer of sludge, approximately 1 m to 2 m deep at the bottom of the Lagoon.
- Tidal flushing generally occurred daily. However, in summer flushing is reduced particularly at low points in inter-annual tidal cycles and during the years of low rainfall.
- Tidal exchange with the Estuary was the largest component of the Lagoon water balance during the study. Contributions from groundwater and stormwater were small by comparison and are only important when water levels in the Estuary are very low.

The above factors mean that the floating filamentous algal mats are more likely to occur at low points in inter-annual tidal cycles and during the years of low rainfall when the Estuary water levels are lower and the effect of flushing is minimal.

22.2 WATER AND SEDIMENT QUALITY

Surface water quality within the Lagoon was characterised by TN that was below the trigger values, but had ammonia-N, TP and DRP concentrations that exceeded the trigger values. Relative concentrations of these nutrients between the Lagoon and the Estuary suggest the Estuary may be a source of these nutrients;

- Groundwater quality was slightly acidic to circumneutral, generally enriched with nutrients with respect to the trigger values for TN, ammonia-N, NOx, and TP. Elevated total metal/metalloid concentrations were detected in the north-eastern and eastern bores.
- Stormwater quality was a source of nutrients and metal contamination which over time may load the Lagoon sediments and water column with nitrogen, phosphorus and metal/metalloids.
- Sediment quality within the Lagoon and Estuary was characterised by 100% organic nitrogen as well as some phosphorus and metal/metalloid loading, and was considered to be stable with respect to nutrient cycling (mineral versus organic nitrogen). The pH(Field) and pH(Fox) tests confirmed that disturbance and exposure of sediments to oxygen would cause a huge pH shift and subsequent release of nutrients and metals from the sediments.

22.3 PRIMARY PRODUCTION

- The phytoplankton and macroalgae (filamentous free-floating mats) were typical of the Swan-Canning Estuary showing similar seasonal succession of taxonomic groups. The phytoplankton collected during the study were well known euryhaline taxa and did not indicate a eutrophic or degraded system.
- The benthic microbial community (mats) identified during the study (2018) was dominated by the coccoid cyanobacterium *Microcystis botrys*. While freshwater *Microsystis* species are linked to known toxic blooms, *M. botrys* is not known to be harmful in Australia.
- The algal (filamentous) and cyanobacterial mats add to habitat heterogeneity in the Lagoon. This is important in maintaining the integrity of the system. Microbial mats are also important in the uptake and removal of nutrients, acting as sinks. If the Lagoon channel is blocked and there is no flow to the Estuary there is a risk that extensive mats, as seen in 2016, may result in increased biomass decomposing in the Lagoon. Typically, drift algae eventually flushed to the ocean/Estuary, as was observed during this study.

22.4 LAGOON VEGETATION

- The Lagoon supports a variety of vegetation communities that are based on the varying lagoon hydrology from saltmarsh communities to fringing rushes of *Juncus* and *Schoenus* spp., and the upland dampland to degraded woodland communities that have largely been cleared and now under restoration.
- The Lagoon vegetation is mostly in Excellent to Very good condition for the riparian fringe, however, the changes due to historical clearing of upland vegetation alongside changes in lagoon hydrology are impacting overall condition of vegetation by build-up of salt in parts of the fringing rush habitat and the lack of freshwater input that generally supports productive woodland / dampland communities.

22.5 FAUNA

The Salter Point area has a depauperate fauna due to extensive development in surrounding areas, but as such it acts as a refuge that enables fauna to persist. A number if features of the site make it particularly important as a refuge and in a functional sense, as follows:

- It provides a wide range of environments in a small area, from upland vegetation on sandy soils to the shallows of the Lagoon and adjacent Estuary.
- Some of the environments are unusual in the immediate region, such as the Lagoon shallows, the roosting area at the mouth of the Lagoon and the remnant upland vegetation.
- The site is part of a corridor for wildlife movement along the Canning River Estuary.
- The freshwater seepage into the Lagoon may support frogs and freshwater aquatic invertebrates that might not otherwise be present.
- The Lagoon provides a relatively large area of shallows that are easily accessed by aquatic fauna from the Estuary, and also provides a large area of emergent vegetation that can be used as shelter by invertebrates and young fish. Most of the Estuary shoreline along this section of the Canning Riverpark is exposed to wave action and drops off to deeper water quickly.

There were Cat tracks through the area and these may be domestic animals. They will prey upon lizards and small birds.

23.0 RECOMMENDATIONS

Given the key findings above the following recommendations are made for management of the Lagoon:

23.1 IMPROVING FLUSHING OF THE LAGOON

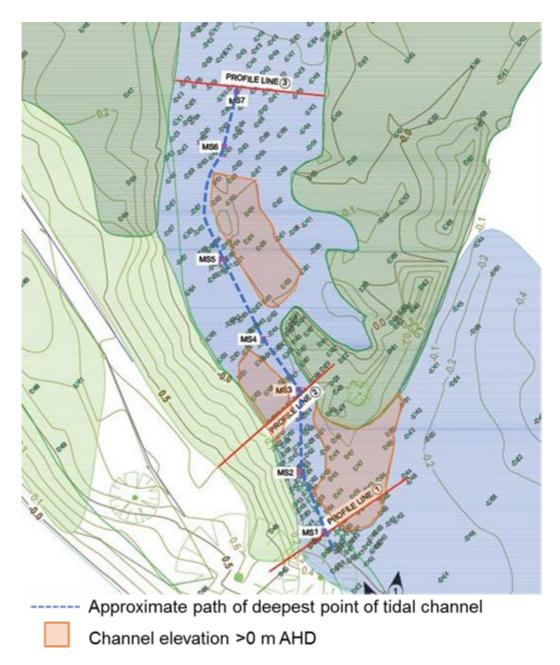
23.1.1 Short Term Actions

Flushing of the Lagoon in summer should be increased by:

- Removing all limestone rocks positioned across the outlet channel edge (limestone was positioned by members of public) to reduce sand build up;
- Reducing groundwater abstraction within the City. An immediate target of 10% reduction could be set for the immediate catchment.

The area where groundwater abstraction should be reduced should include the suburbs immediately hydraulically up-gradient of the Lagoon i.e. the eastern half of Salter Point, Manning, Karawara, Waterford and the Collier Park Golf Course in Como as shown on Figure 33. However, a detailed groundwater study would be needed to ascertain the volumes of water abstracted from the superficial aquifer, and the seasonality of this. The location of registered groundwater bores from the Water Information Reporting (WIR) database within the area boundary is shown on Figure 33. It is important to note that garden bores do not require a licence and so are not included within the WIR database, however may contribute significantly to reduced groundwater recharge to the lagoon. A public education campaign should be considered within the area to reduce groundwater abstraction for irrigation of private gardens.

WIR registered groundwater bore


Figure 33. Suggested area for reduction in groundwater abstraction


The freshwater seepage should be protected, which may require developing a greater understanding of its hydrology.

The water level loggers should be maintained to allow for continuous monitoring of water levels in the Lagoon, the adjacent estuary and surrounding groundwater.

23.1.2 Long Term Actions

An engineered structure could be installed to control flushing at low points in inter-annual tidal cycles and low rainfall periods. It is possible that there has been an episodic constriction of the tidal channel due to an increase in sediment influx resulting from sustained high mean water levels during 2011 to 2013 and an enhanced capacity for the Lagoon to choke resulting from declining tidal range from 2006 to 2015 (Seashore Engineering, 2018). Seashore have suggested that a small excavation of sediment build-up in the channel could occur to allow flushing of the Lagoon during low tide/rainfall years and is likely to last for a number of years. Further site investigations by a coastal engineer would be required to better define appropriate locations and extent of works. However, sediment removal works are likely to be focussed on the margins of areas that have an elevation above 0 m AHD, outlined on Figure 34. At this elevation, tidal flushing of the Lagoon currently ceases.

Any proposal to modify the channel needs further study to ensure it does not negatively impact on Lagoon levels and the sediment movement and stability around the Lagoon. An optimal depth of the excavation should be determined to make sure flushing is effective but the Lagoon does not drain and dry out completely. A weir gate control could be installed to enable controlled flushing when needed.

23.2 MECHANICAL REMOVAL OF FLOATING ALGAL MATS

The aesthetics of the Lagoon could also be managed in the short-term through mechanical removal of floating algal mats. This has been conducted in the Swan-Canning Estuary before. Blooming drift algae are relatively easy to remove manually using various types of harvesters (Thomsen and Wernberg, 2009). Harvesting methods suitable for drift algae include raking or manually skimming. More sophisticated skimming techniques such as freely floating skimmers with a pump may also be suitable. A harvesting method should be chosen that does not disturb the benthic algal mat and associated fauna and a plan should be in place for disposal of the harvested mats.

23.3 NUTRIENT AND POLLUTANT SOURCE MANAGEMENT

23.3.1 Short Term Actions

 Formulation of catchment nutrient plans to prevent nutrients such as nitrogen and phosphorus and metal/metalloids from migrating into the Lagoon via the stormwater drain, and potentially incoming groundwater from the northern catchment.

23.3.2 Long Term Actions

 Daylight existing stormwater drains further up the catchment and construct 'living streams', swales and/or biofilters to improve the quality of stormwater entering the Lagoon and Estuary.

23.4 SEDIMENT MANAGEMENT

Dredging of the Lagoon to remove benthic algal mats and/or sludge is not recommended for the following reasons:

- It would destroy an important fauna habitat and refuge;
- The sediments are Acid Sulfate Soils, hence the impacts and costs are likely to be complex to manage and onerous;
- The Lagoon is protected under various Acts.

Should sediment quality deteriorate in the future, consider options to stabilise in-situ sediments using bentonite or other clay amendments and bio-flocculants. Bio-flocculants are an emerging field and a separate study and trials would be needed to ascertain costs:benefits.

23.5 HABITAT MANAGEMENT

Management of Vegetation

The following management measures are recommended to maintain and improve the current vegetation condition:

- Nutrient input into groundwater should be reduced to optimise establishment of native groundwater dependant species;
- Regular weed control should be maintained;
- Upland vegetation should be enhanced through revegetation, with a focus on nectar-bearing trees and shrubs that provide shelter and food (e.g. *Banksia* spp.).

Management of Fauna

The following management measures are recommended to maintain the Lagoon as a refuge for fauna:

- Access into the Lagoon for fish and aquatic invertebrates is important throughout the year. While
 there are many things to take into account in management of the Lagoon, ensuring that
 connectivity with the Estuary throughout the year would be beneficial for fauna.
- Waterbirds roosting at the mouth of the Lagoon are important, but the birds are subject to disturbance by people. It is not clear if this can be resolved by 'guiding' people away from the roosting area, or by creating a new roosting area slightly away from the Lagoon entrance. In general, clear trails that manage the movement of people and prevent people from wandering and trampling through the site are important.
- Dead trees along the shoreline and nearby should be retained (for roosting).
- Residents close to reserves should be encouraged to keep their cats indoors at all times, or at least at night.

REFERENCES

Astill, H. L. and Lavery, P. S. (2001) The dynamics of unattached benthic macroalgal accumulations in the Swan–Canning estuary, *Hydrological Processes* 15: 2387–2399

ANZECC (2000a) 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality', Australian and New Zealand Environment and Conservation Council, vol. 1.

ANZECC (2000b) 'Australian and New Zealand Guidelines for Fresh and Marine Water Quality', Australian and New Zealand Environment and Conservation Council, vol. 2.

ATA Environmental, (2001). Environmental Assessment, East Clontarf, Manning ATA Environmental Report 2000/179. Prepared for The Trustees of the Christian Brothers, January 2001.

Australian Interaction Consultants (2010). Site Identification Survey Report of the Proposed Canning River Bores in the City of Canning, Perth.

Bamford, M.J. and Calver, M.C. (2012). Cat Predation and Suburban Lizards: A 22 year study at a suburban Australian property. *The Open Conservation Biology Journal* 6: 1-11.

Bird, E.C.F. (1986) Mangroves and intertidal morphology in Westernport Bay, Victoria, Australia. *Australia. Mar. Geol.* 69, 251–271.

Brearley, A. (2005). *Ernest Hodgkin's Swanland: Estuaries and coastal lagoons of Southwestern Australia*. Perth: National Trust of Australia.

Davidson, A. (1995) *Hydrogeology and Groundwater Resources of the Perth Region Western*. Perth: Department of Minerals and Energy.

Deeley, D. M. and Paling, E. I. (1999). Assessing the Ecological Health of Estuaries in Australia. National River health program, Urban Sub Program, Report Np. 10, LWRRDC Occasional Paper 17/99.

Dell, J., and Banyard, J. (2000). Bush Forever, Vol. 2: Directory of Bush Forever Sites. Government of Western Australia.

Department of Environment (DoE) (2004). Perth Groundwater Atlas, Second Edition. Perth.

Department of Environment Regulation (DER) (2014) Acid Sulphate Soil Risk Map, Swan Coastal Plain (DER-003)

Department of Water (DoW) (2006) *Water Quality Protection Note – Groundwater Monitoring Bores*. Government of Western Australia, WQPN 30, February 2006.

Department of Water (DoW) (2010) Macrophytes and macroalgae in the Swan-Canning estuary. *River Science Issue 20*, March 2010.

Department of Water (DoW) (2016) Swan Canning Estuarine Data Report, June 2015 to May 2016. Report prepared by the Department of Water for the Department of Parks and Wildlife.

Eliot, M. (2010) Influence of interannual tidal modulation on coastal flooding along the Western Australian coast. *J. Geophys. Res.*, 115, C11013, doi:10.1029/2010JC006306.

Environment Australia (2001). A Directory of Important Wetlands in Australia, Third Edition. Canberra: Environment Australia.

Environmental Protection Authority (EPA) (2004). *Guidance for the Assessment of Environmental Factors: Terrestrial Fauna Surveys for Environmental Impact Assessment in Western Australia. No. 56.* Environmental Protection Authority, Perth, Western Australia.

Gozzard, J. R. (1983). Fremantle Part Sheet 2033 I and 2033 IV, Environmental Geology Series. Geological Survey of Western Australia, Department of Minerals and Energy, Perth, Western Australia.

Hamilton, D. P., Douglas, G. B., Adeney, J. A., and Radke, L. C. (2006) Seasonal changes in major ions, nutrients and chlorophyll *a* at two sites in the Swan River estuary, Western Australia. *Marine and Freshwater Research*, 57: 8036-815.

Hauxwell, J., Cebrian, J., and Valiela, I. (2003) Eelgrass *Zostera marina* loss in temperate estuaries: relationship to land derived nitrogen loads and effect of light limitation imposed by algae. *Marine Ecology Progress Series* 247: 59–73

Hillman, K., McComb, A. J., Bastyan, G., and Paling, E. (2000) Macrophyte abundance and distribution in Leschenault Inlet, an estuarine system in south-western Australia. *Journal of the Royal Society of Western Australia* 83: 349-355

Hodgkin, E. P. (1987) The hydrology of the Swan River estuary: Salinity the ecological master factor. In: *The Swan River Estuary: Ecology and Management*. (John, J. ed). Proceedings of a symposium of the Swan-Canning River Estuarine System, WA. 10 – 11 Oct 1986. Pp 34-44.

Hodgkin, E. P. and Hesp, P. (1998) Estuaries to salt lakes: Holocene transformation of the Estuarine ecosystems of southwestern Australia. *Marine and Freshwater Research* 49(3): 183-201.

Hodgkin, E. P., and Vicker, E. (1987) A history of algal pollution in the estuary of the Swan River. In: *The Swan River Estuary: Ecology and Management*. (John, J. ed). Proceedings of a symposium of the Swan-Canning River Estuarine System, WA. 10 – 11 Oct 1986. Pp 65-70

Höffle, H., Wernberg, T., Thomsen. M. S., and Holmer, M. (2012) Drift algae, an invasive snail and elevated temperature reduce ecological performance of a warm-temperate seagrass, through additive effects. *Marine Ecology Progress Series* 450: 67-80

Keighery, B.J. (1994) Bushland Plant Survey. A Guide to Plant Community Survey for the Community., Wildlife Society of WA (Inc.). Western Australia.

Kingsford, M. J. (1995) Drift algae: A contribution to near-shore habitat complexity in the pelagic environment and an attractant for fish. *Marine Ecology Progress Series*, 116: 297-301

Kjerfve, B. (ed.) (1994) Coastal Lagoon Processes. Elsevier, Amsterdam.

McCarthy, P. M., and Orchards, A. E. (eds) (2007) Algae of Australia. ABRS, Canberra, CSIRO Publishing, Melbourne. 368-373

NRMMC (2005) National water quality management strategy; Australian drinking water guidelines, NHMRC and NRMMC, Australia.

Pedersen, M. F., Staehr, P. A., Wernberg, T., and Thomsen, M. S. (2005) Biomass dynamics of exotic *Sargassum muticum* and native *Halidrys siliquosa* in Limfjorden, Denmark— implications of species replacements National on turnover rates. *Aquatic Botany*, 83: 31–47

Reed, D. C., Law, D. R., and Ebeling, A. W. (1988) Variation in algal dispersal and recruitment. the importance of episodic events. *Ecol. Monogr.*, 58: 937-948

Seashore Engineering (2018) Advice on Renourishment, Salter Point. Letter Report to DBCA, dated 21st March 2018.

Semeniuk, C.A. and Semeniuk, V. (2012) The response of basin wetlands to climate changes: a review of case studies from the Swan Coastal Plain, south-western Australia. *Hydrobiology*, 708:45–67

Siemon (2000) Salter Point and Waterford Foreshore Management Plan -an integral part of the Canning River Wetlands. Technical Report for City of South Perth by Ecosystem Management Services.

Syrinx Environmental (2012) Standard Operating Procedure *Phytophthora cinnamomi* Management, dated 11th September 2012.

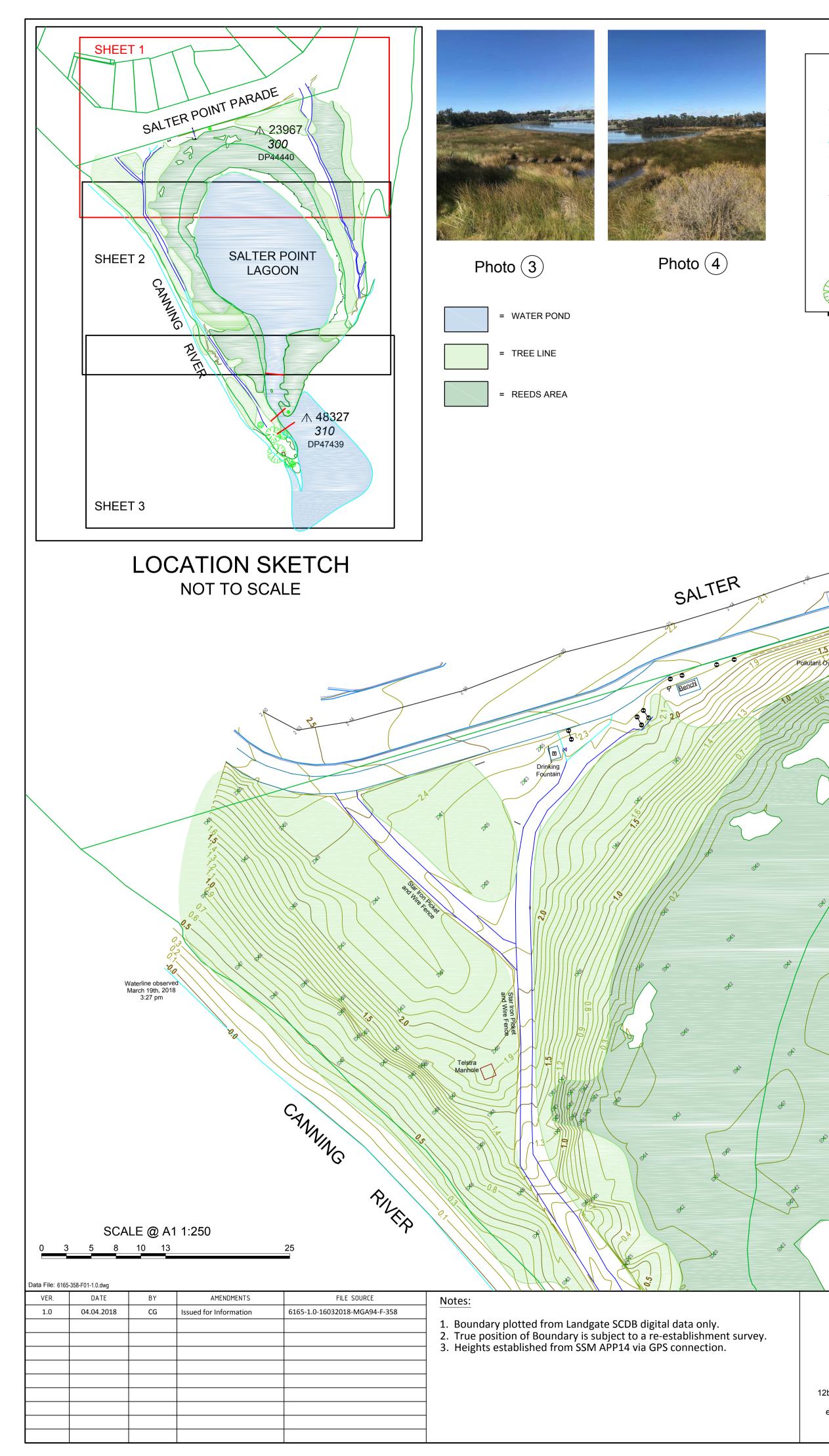
Swan River Trust (SRT) (2009). Landscape Description Precinct 16, Available from http://www.swanrivertrust.wa.gov.au/swan-river-trust/publications/factsheets/landscape-description/page/2/ Accessed on: 19/06/2018.

Thomas, S. and Ridd, P.V., 2004. Review of methods to measure short time scale sediment accumulation. *Mar. Geol.*, 207, 95–114

Thomsen. M. S., and Wernberg, T. (2009). Drift algae, invasive snails and seagrass health in the Swan River: patterns, impacts and linkages. Report prepared for the Swan River Trust, Centre for Marine Ecosystems Research, Edith Cowan University, Perth.

Trocini S., Barrett G., Howard K. and Ramalho C. (2015) Rakali Community Survey 2014-2015. Report prepared by WWF-Australia and the Western Australian Department of Parks and Wildlife. WWF-Australia, Perth.

Wetzel, R. G. (2001) Limnology: Lake and river ecosystems, third edition. Academic Press, New York.


APPENDICES

APPENDIX 1 LEVEL AND FEATURE SURVEY

Approximate Outline of Survey Areas

- Survey Area
- Detailed Level Survey
- Survey Profile Line

SVMBOL LEGEND

S١	MBOL LEGEND
	MONITOR STAKES
$\overline{}$	BOLLARD
•	TOP OF SLUDGE
+	BOTTOM OF SLUDGE
	MONITOR BORE
+	WATER LEVEL
\otimes	LEVEL LOGGER
+	NATURAL SURFACE
\triangle	SURVEY CONTROL POINT
9	SIGN (ONE POLE)
Т	ТАР
\bowtie	VALVE
(Tb	TELEPHONE
\oplus	POLE POST
	TREE

CONTOUR LEGEND

 \sim 5.0 \sim Contour Major Lagoon 1.0m Intervals \sim 5.0 \checkmark Contour Minor Lagoon 0.2m Intervals \sim 5.0 \sim Contour Major 0.5m Intervals ∽ 5.0 ✓ Contour Minor 0.1m Intervals

CONTROL POINT SCHEDULE

Point	Easting	Northing	Elevation	Description
9001	393571.330	6455827.342	2.13	Ramset in Path
9002	393666.599	6455884.003	2.66	Ramset in Path
9003	393586.126	6455833.874	2.28	Bridge Nail in Bitumen
9005	393632.011	6455621.974	0.76	Peg at Ground Level
APP14	393655.872	6455794.420	1.61	SSM

PARADE

195

-2.0-

۲

Typical top of sludge-

AN 9

City of South Perth

A

SALTER POINT LAGOON

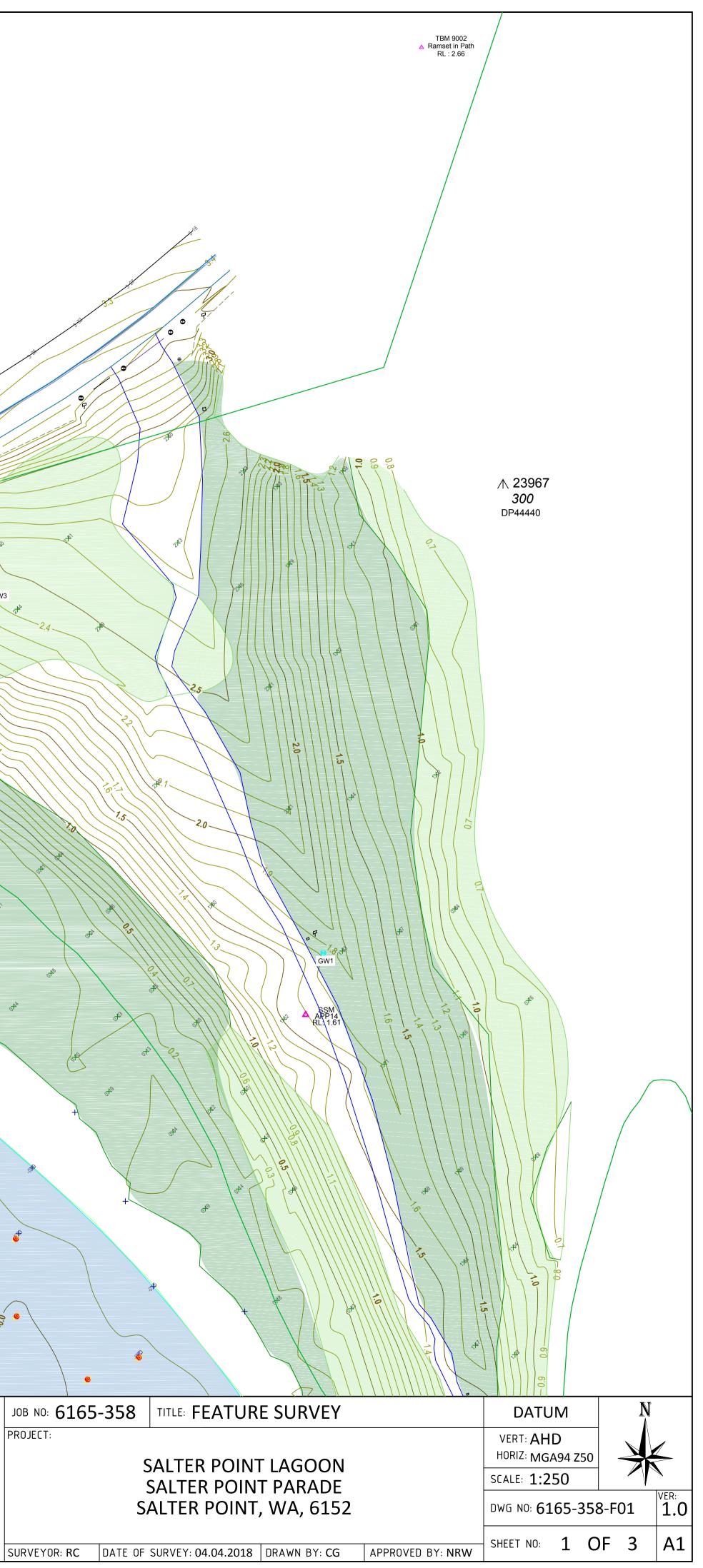
▲ 48327 310 DP47439

CLIENT:

TBM 9003 B/N in Bitumen – RL : 2.28

TBM 9001 R/Set in Path /- RL: 2.13

POINT /


1.5



et a

.0

GW3

ata File: 616	5-358-F01-1.0.dwg			
VER.	DATE	BY	AMENDMENTS	FILE SOURCE
1.0	04.04.2018	CG	Issued for Information	6165-1.0-16032018-MGA94-F-358

Notes:

Boundary plotted from Landgate SCDB digital data only.
 True position of Boundary is subject to a re-establishment survey.
 Heights established from SSM APP14 via GPS connection.

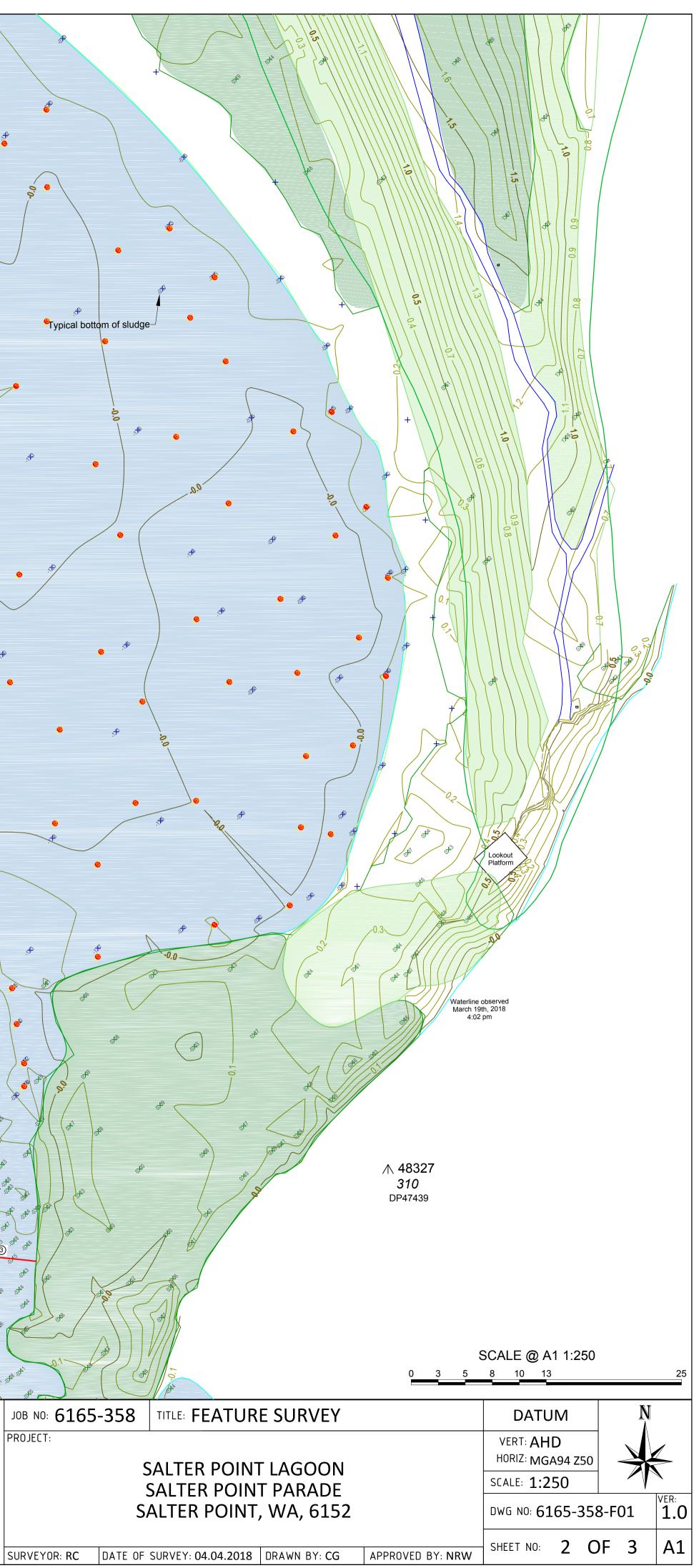
	Elevation	Description
2	2.13	Ramset in Path
3	2.66	Ramset in Path
4	2.28	Bridge Nail in Bitumen
4	0.76	Peg at Ground Level
20	1.61	SSM

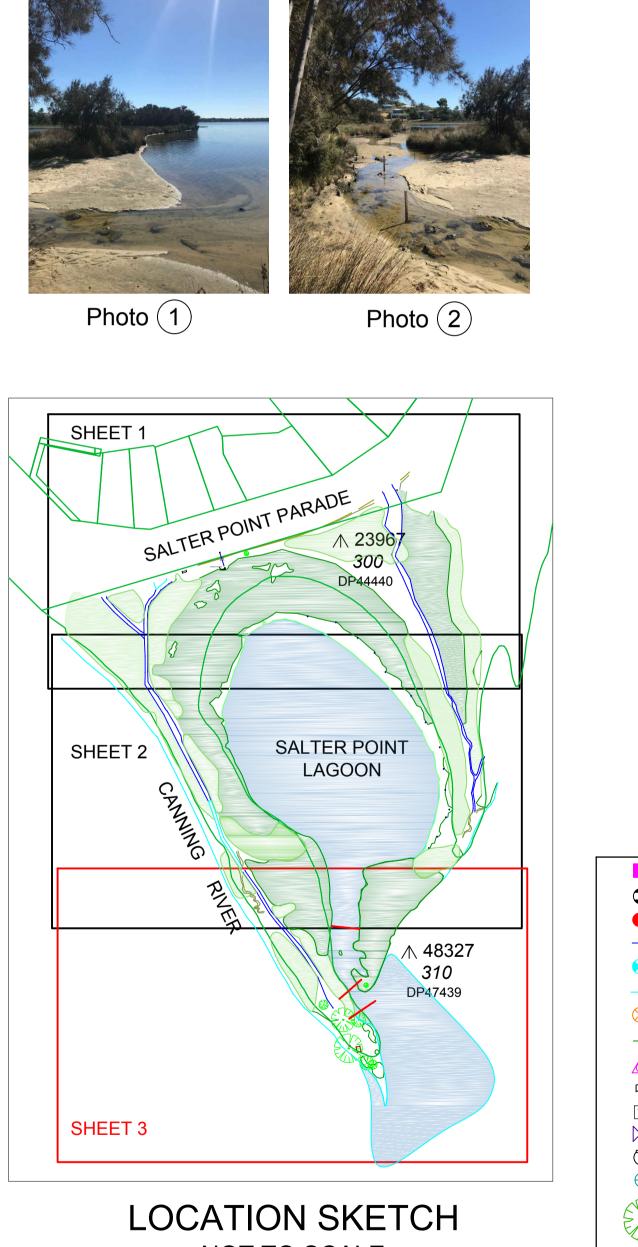
Typical top of sludge -

SW1

A .

A.


SALTER POINT


<u> (</u>

Fypical bottom of sludge-

JOB NO: 6165-358 PROJECT:

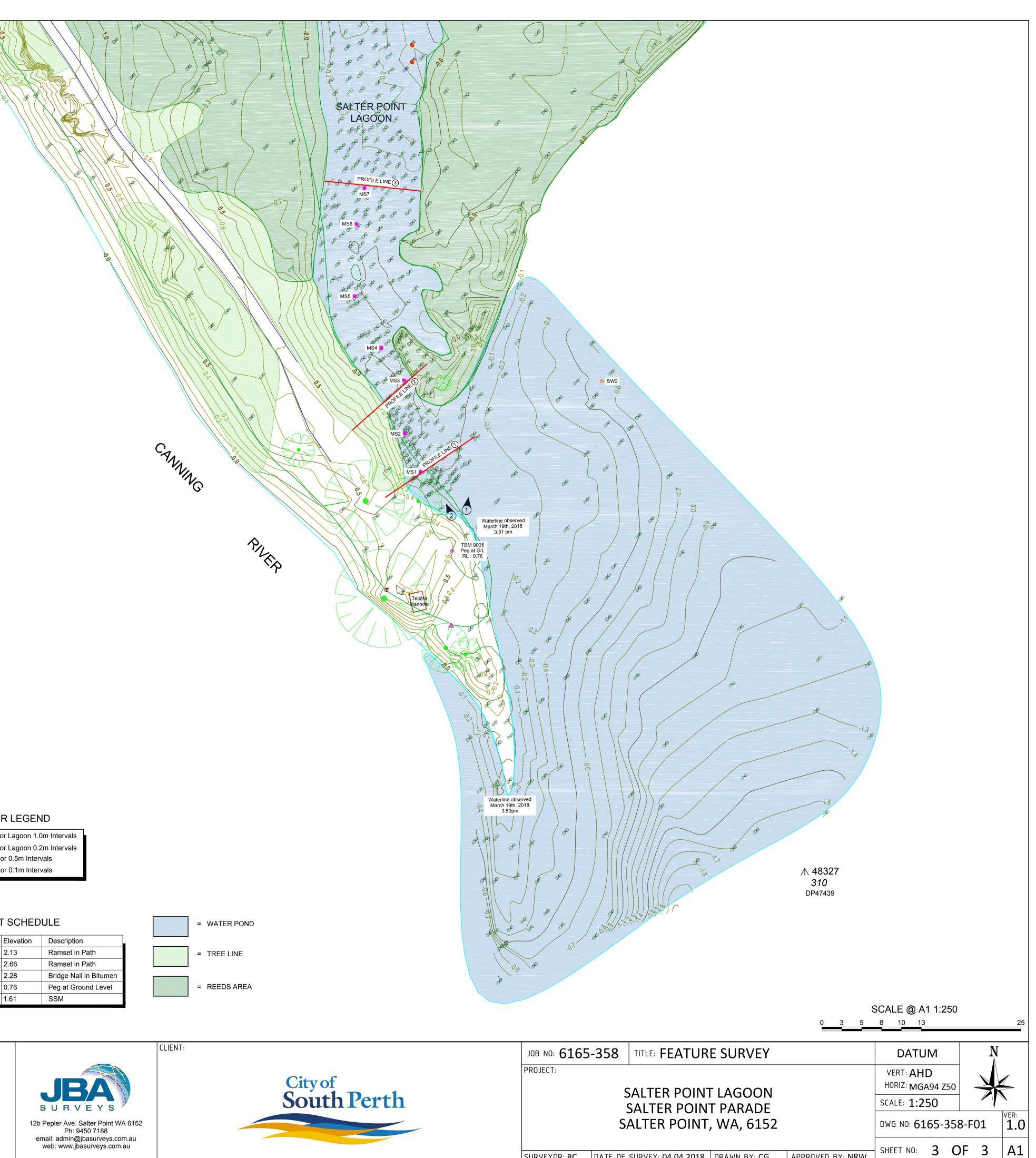
PROFILE LINE

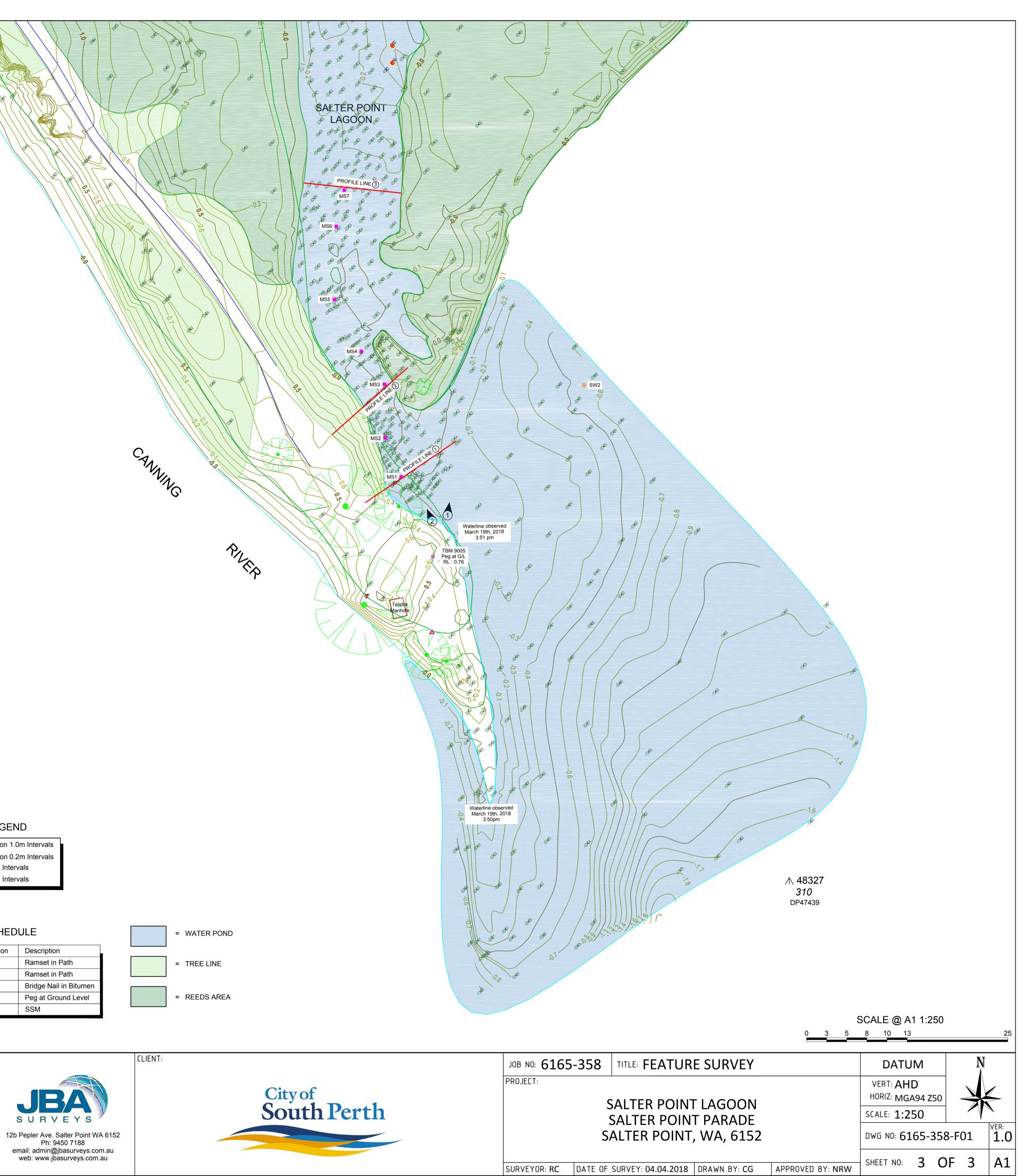
NOT TO SCALE

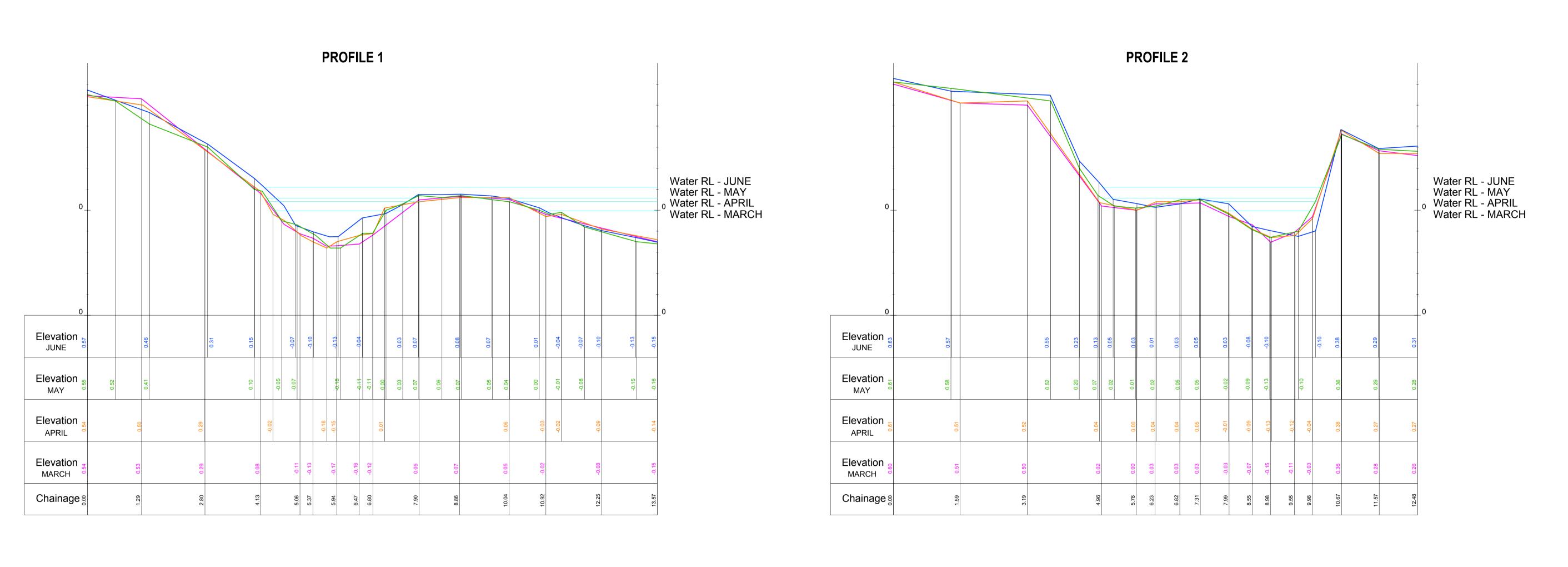
SI	SYMBOL LEGEND					
	MONITOR STAKES					
·	BOLLARD					
	TOP OF SLUDGE					
+	BOTTOM OF SLUDGE					
\bigotimes	MONITOR BORE					
+	WATER LEVEL					
\otimes	LEVEL LOGGER					
+	NATURAL SURFACE					
A	SURVEY CONTROL POINT					
P	SIGN (ONE POLE)					
Т	TAP					
\bowtie	VALVE					
(Jb	TELEPHONE					
\oplus	POLE POST					
	TREE					

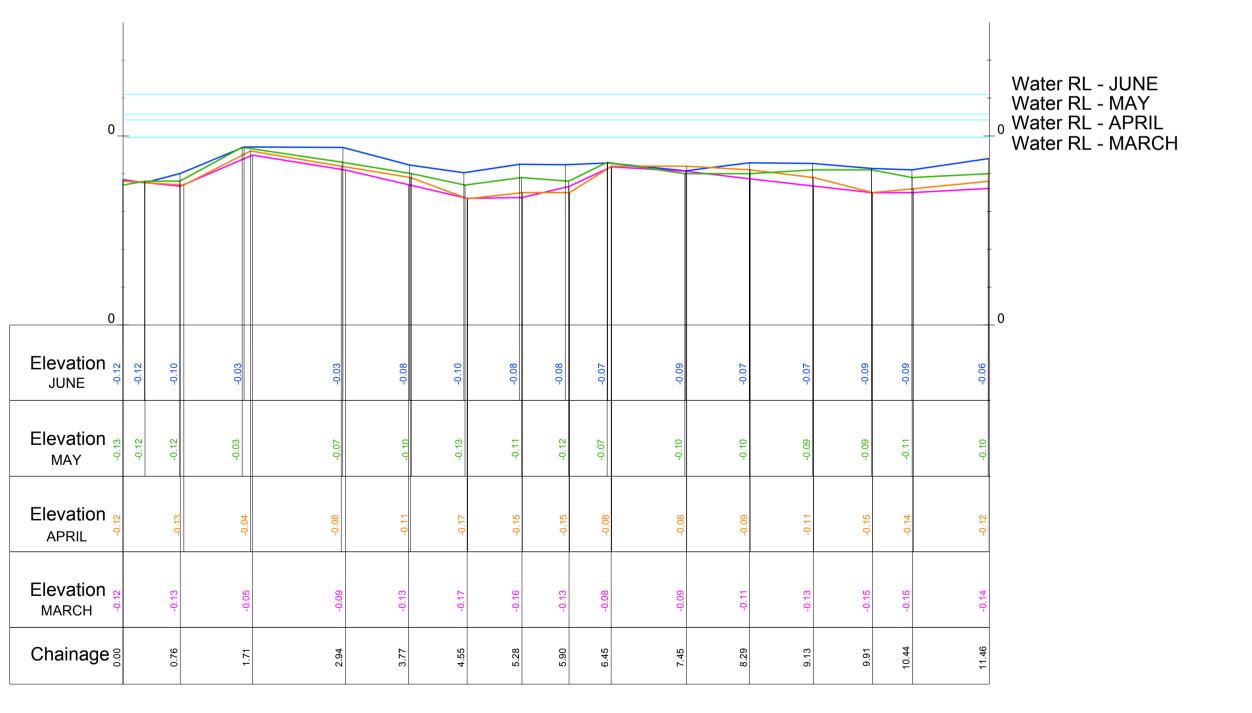
CONTOUR LEGEND

\sim 5.0 \sim	Contour Major
\sim 5.0 \sim	Contour Minor
\sim 5.0 \sim	Contour Major
\sim 5.0 \checkmark	Contour Minor


CONTROL POINT SCHEDULE


Easting	Northing	E
393571.330	6455827.342	2
393666.599	6455884.003	2
393586.126	6455833.874	2
393632.011	6455621.974	(
393655.872	6455794.420	1
	393571.330 393666.599 393586.126 393632.011	393571.3306455827.342393666.5996455884.003393586.1266455833.874393632.0116455621.974


Data File: 616	5-358-F01-1.0.dwg			
VER.	DATE	BY	AMENDMENTS	FILE SOURCE
1.0	04.04.2018	CG	Issued for Information	6165-1.0-16032018-MGA94-F-358


Notes:

Boundary plotted from Landgate SCDB digital data only.
 True position of Boundary is subject to a re-establishment survey.
 Heights established from SSM APP14 via GPS connection.

LEGEND

 June	06.06.2018	Water RL : 0.55
 May	02.05.2018	Water RL : 0.29
 April	10.04.2018	Water RL : 0.21
 March	27.03.2018	Water RL : -0.02

6165-358-PR01-2.0.dwg

	5				
VER.	DATE	BY	AMENDMENTS	FILE SOURCE	Notes:
1.0	10.04.2018	SF	Issued for Information	6165-1.0-16032018-MGA94-F-358	1. Heights established from APP14 Via GPS
2.0	07.06.2018	SF	Added Current Profile	6165-1.0-16032018-MGA94-F-358	
					-
					1
					1
	1		1		

GPS connection.

Horizo	ontal	l Sc	ale @	DA	1 1:50
0	0.5	1	1.5	2	2.5

Vertical Scale @A2 1:10 0 0.1 0.2 0.3 0.4 0.5

JOB NO: 6165-359 TITLE: PROFILE SURVEY						JM		Ņ	
PROJECT:	(SALTER POINT SALTER POINT		VERT: AH HORIZ: MG SCALE: SEI DWG NO: 62	A94 Z E PL	AN		VER:	
									2.0
SURVEYOR: SW		SURVEY: 27.03.2018	DRAWN BY: SF	APPROVED BY: NRW	SHEET NO:	1	OF	1	A1
JURVETUR: 3VV	DATE OF	JURVET: 27.03.2018	DRAWN DI: 3F	AFEROVED DISINERV					

12B Pepler Ave. Salter Point WA 6152 Ph: 9450 7188 Fax: 9450 7199 email: admin@jbasurveys.com.au web: www.jbasurveys.com.au

SALTER POINT PARADE LAGOON SALTER POINT, WA, 6152

JBA Job Number:6165-358 Note: See Drawing 6165-358-F01-1.0 for Profile Locations

2018 Profile Survey Schedule

Profile Line 1

March

Chainage	Coordinates (MGA94)		
	Easting	Northing	RL (AHD)
0.00	393623.64	6455628.69	0.54
1.29	393624.72	6455629.41	0.53
2.80	393625.96	6455630.26	0.29
4.13	393627.06	6455631.01	0.08
4.41	393627.29	6455631.16	-0.02
4.68	393627.52	6455631.32	-0.07
5.06	393627.83	6455631.53	-0.11
5.37	393628.09	6455631.70	-0.13
5.69	393628.35	6455631.88	-0.17
5.94	393628.56	6455632.02	-0.17
6.47	393629.00	6455632.32	-0.16
6.80	393629.27	6455632.51	-0.12
7.07	393629.49	6455632.66	0.02
7.90	393630.18	6455633.12	0.05
8.87	393630.98	6455633.67	0.07
10.04	393631.95	6455634.33	0.05
10.92	393632.68	6455634.82	-0.02
11.28	393632.98	6455635.02	-0.02
12.25	393633.78	6455635.56	-0.09
13.57	393634.88	6455636.31	-0.15

Profile Line 1

April

Chainago	Coordinates (MGA94)		
Chainage	Easting	Northing	RL (AHD)
0.00	393623.64	6455628.69	0.54
1.32	393624.74	6455629.43	0.50
2.78	393625.94	6455630.25	0.29
4.12	393627.05	6455631.00	0.09
4.42	393627.30	6455631.17	-0.02
4.69	393627.53	6455631.32	-0.05

Chainage	Coordi	nates (MGA94)	RL (AHD)
	Easting	Northing	KL (AND)
5.08	393627.85	6455631.54	-0.12
5.36	393628.08	6455631.70	-0.15
5.70	393628.36	6455631.89	-0.18
5.94	393628.56	6455632.03	-0.15
6.47	393629.00	6455632.32	-0.12
6.81	393629.28	6455632.51	-0.11
7.08	393629.50	6455632.66	0.01
7.90	393630.18	6455633.12	0.04
8.87	393630.98	6455633.67	0.06
10.04	393631.95	6455634.33	0.06
10.92	393632.68	6455634.82	-0.03
11.29	393632.99	6455635.03	-0.02
12.25	393633.78	6455635.56	-0.09
13.57	393634.88	6455636.31	-0.14

May

Chainage	Coordi	nates (MGA94)	RL (AHD)
	Easting	Northing	KL (AND)
0.00	393623.64	6455628.69	0.55
0.67	393624.20	6455629.06	0.52
1.48	393624.86	6455629.52	0.41
2.87	393626.02	6455630.30	0.30
3.97	393626.93	6455630.92	0.10
4.17	393627.09	6455631.03	0.09
4.63	393627.47	6455631.29	-0.05
5.00	393627.78	6455631.49	-0.07
5.44	393628.14	6455631.74	-0.12
5.78	393628.43	6455631.94	-0.18
6.03	393628.63	6455632.07	-0.18
6.56	393629.07	6455632.37	-0.11
6.79	393629.27	6455632.50	-0.11
7.11	393629.53	6455632.68	0.00
7.51	393629.86	6455632.90	0.03
7.89	393630.17	6455633.12	0.07
8.45	393630.63	6455633.43	0.06
8.91	393631.01	6455633.69	0.07
9.64	393631.63	6455634.10	0.05
10.05	393631.96	6455634.33	0.04
10.76	393632.55	6455634.73	0.00
11.00	393632.75	6455634.87	-0.02
11.29	393632.99	6455635.03	-0.01
11.84	393633.44	6455635.34	-0.08
13.08	393634.47	6455636.03	-0.15
13.57	393634.88	6455636.31	-0.16

Profile Line 1

Chainage	Coordinates (MGA94)		
	Easting	Northing	RL (AHD)
June			
Chainage	Coordi	nates (MGA94)	RL (AHD)
Chanlage	Easting	Northing	KL (AND)
0.00	393623.64	6455628.69	0.57
0.67	393624.20	6455629.07	0.53
1.48	393624.87	6455629.52	0.46
2.86	393626.01	6455630.30	0.31
3.98	393626.94	6455630.92	0.15
4.16	393627.08	6455631.02	0.12
4.68	393627.52	6455631.32	0.02
4.96	393627.75	6455631.47	-0.07
5.39	393628.10	6455631.71	-0.10
5.77	393628.42	6455631.93	-0.13
5.97	393628.59	6455632.04	-0.13
6.55	393629.06	6455632.36	-0.04
6.80	393629.27	6455632.50	-0.03
7.11	393629.52	6455632.68	-0.02
7.51	393629.86	6455632.90	0.03
7.88	393630.17	6455633.11	0.07
8.44	393630.63	6455633.43	0.07
8.89	393631.00	6455633.68	0.08
9.63	393631.61	6455634.09	0.07
10.05	393631.96	6455634.33	0.06
10.76	393632.55	6455634.73	0.01
11.00	393632.75	6455634.86	-0.01
11.29	393632.99	6455635.03	-0.04
11.83	393633.43	6455635.33	-0.07
12.25	393633.79	6455635.57	-0.10
13.06	393634.45	6455636.02	-0.13
13.57	393634.88	6455636.31	-0.15

March

Chainage	Coordinates (MGA94)		RL (AHD)
	Easting	Northing	KL (AHD)
0.00	393619.51	6455637.15	0.60
1.59	393620.70	6455638.20	0.51
3.19	393621.90	6455639.27	0.50
4.96	393623.22	6455640.44	0.02
5.78	393623.84	6455640.99	0.00
6.23	393624.17	6455641.28	0.03
6.82	393624.62	6455641.67	0.03
7.31	393624.98	6455641.99	0.04
7.99	393625.49	6455642.45	-0.03
8.55	393625.91	6455642.82	-0.07
8.98	393626.24	6455643.11	-0.15

Chainage	Coordinates (MGA94)		
	Easting	Northing	RL (AHD)
9.55	393626.66	6455643.48	-0.11
9.98	393626.98	6455643.77	-0.03
10.04	393627.03	6455643.81	-0.01
10.67	393627.50	6455644.22	0.36
11.57	393628.17	6455644.82	0.28
12.48	393628.85	6455645.42	0.26

April

Chainage	Coordinates (MGA94)		RL (AHD)
	Easting	Northing	KL (AHD)
0.00	393619.51	6455637.15	0.61
1.58	393620.69	6455638.20	0.51
3.19	393621.90	6455639.27	0.52
4.91	393623.18	6455640.40	0.04
5.79	393623.85	6455640.99	0.00
6.26	393624.20	6455641.30	0.04
6.82	393624.62	6455641.67	0.04
7.31	393624.98	6455642.00	0.05
7.98	393625.49	6455642.44	-0.01
8.54	393625.91	6455642.81	-0.09
9.00	393626.25	6455643.12	-0.13
9.57	393626.67	6455643.49	-0.12
9.98	393626.98	6455643.77	-0.04
10.66	393627.49	6455644.22	0.38
11.57	393628.17	6455644.82	0.27
12.48	393628.85	6455645.42	0.27

Profile Line 2

May

Chainage	Coordinates (MGA94)		
	Easting	Northing	RL (AHD)
0.00	393619.51	6455637.15	0.61
1.37	393620.57	6455638.02	0.58
3.75	393622.34	6455639.61	0.52
4.43	393622.85	6455640.06	0.20
4.87	393623.18	6455640.35	0.07
5.26	393623.47	6455640.62	0.02
5.76	393623.85	6455640.95	0.01
6.26	393624.21	6455641.28	0.02
6.85	393624.66	6455641.67	0.05
7.31	393625.01	6455641.97	0.05
7.99	393625.53	6455642.41	-0.02
8.52	393625.91	6455642.77	-0.09
8.96	393626.24	6455643.07	-0.13

Chainaga	Coordinates (MGA94)		
Chainage	Easting	Northing	RL (AHD)
9.64	393626.75	6455643.52	-0.10
10.05	393627.06	6455643.78	0.04
10.68	393627.52	6455644.21	0.36
11.56	393628.18	6455644.80	0.29
12.48	393628.85	6455645.42	0.28

June

Chainage	Coordi	Coordinates (MGA94)	
	Easting	Northing	RL (AHD)
0.00	393619.51	6455637.15	0.63
1.38	393620.54	6455638.06	0.57
3.73	393622.30	6455639.62	0.55
4.43	393622.83	6455640.09	0.23
4.90	393623.18	6455640.40	0.13
5.23	393623.43	6455640.62	0.05
5.80	393623.85	6455640.99	0.03
6.23	393624.17	6455641.28	0.01
6.82	393624.62	6455641.67	0.03
7.29	393624.97	6455641.98	0.05
7.98	393625.49	6455642.44	0.03
8.54	393625.90	6455642.81	-0.08
8.97	393626.22	6455643.09	-0.10
9.64	393626.73	6455643.54	-0.12
10.05	393627.04	6455643.81	-0.10
10.65	393627.49	6455644.21	0.38
11.55	393628.16	6455644.81	0.29
12.39	393628.78	6455645.37	0.30
12.48	393628.85	6455645.42	0.31

Profile Line 3

March

Chainage	Coordinates (MGA94)		
	Easting	Northing	RL (AHD)
0.00	393616.05	6455668.36	-0.12
0.76	393616.80	6455668.29	-0.13
1.71	393617.75	6455668.19	-0.05
2.94	393618.97	6455668.06	-0.09
3.78	393619.80	6455667.98	-0.13
4.55	393620.57	6455667.90	-0.17
5.28	393621.30	6455667.82	-0.16
5.90	393621.91	6455667.76	-0.13
6.46	393622.47	6455667.70	-0.08
7.45	393623.46	6455667.60	-0.09

Chainaga	Coordi		
Chainage	Easting	Northing	RL (AHD)
8.29	393624.29	6455667.51	-0.11
9.13	393625.13	6455667.42	-0.13
9.91	393625.91	6455667.34	-0.15
10.44	393626.43	6455667.29	-0.15
11.46	393627.44	6455667.18	-0.14

April

Chainaga	Coordi	nates (MGA94)	
Chainage	Easting	Northing	RL (AHD)
0.00	393616.05	6455668.36	-0.12
0.80	393616.85	6455668.28	-0.13
1.69	393617.73	6455668.19	-0.04
2.88	393618.92	6455668.07	-0.08
3.80	393619.83	6455667.97	-0.11
4.56	393620.58	6455667.89	-0.17
5.28	393621.30	6455667.82	-0.15
5.91	393621.92	6455667.76	-0.15
6.46	393622.48	6455667.70	-0.08
7.46	393623.46	6455667.60	-0.08
8.30	393624.30	6455667.51	-0.09
9.13	393625.13	6455667.42	-0.11
9.92	393625.91	6455667.34	-0.15
10.45	393626.45	6455667.29	-0.14
11.45	393627.44	6455667.18	-0.12

Profile Line 3

May

Chainaga	Coordi	Coordinates (MGA94)				
Chainage	Easting	Northing	RL (AHD)			
0.00	393616.05	6455668.36	-0.13			
0.29	393616.34	6455668.36	-0.12			
0.75	393616.79	6455668.27	-0.12			
1.57	393617.61	6455668.18	-0.03			
2.91	393618.93	6455668.04	-0.07			
3.82	393619.84	6455667.95	-0.10			
4.52	393620.54	6455667.87	-0.13			
5.27	393621.29	6455667.80	-0.11			
5.89	393621.91	6455667.73	-0.12			
6.40	393622.41	6455667.67	-0.07			
7.43	393623.43	6455667.56	-0.10			
8.29	393624.29	6455667.48	-0.10			
9.12	393625.12	6455667.40	-0.09			
9.90	393625.89	6455667.33	-0.09			
10.44	393626.43	6455667.26	-0.11			

Chainaga	Coordin	RL (AHD)	
Chainage	Easting	Northing	KL (AHD)
11.44	393627.42	6455667.15	-0.10

June

Chainage	Coordi	nates (MGA94)	RL (AHD)	
Chainage	Easting	Northing		
0.00	393616.05	6455668.36	-0.12	
0.28	393616.33	6455668.34	-0.12	
0.75	393616.80	6455668.29	-0.10	
1.60	393617.64	6455668.20	-0.03	
2.91	393618.94	6455668.06	-0.03	
3.79	393619.82	6455667.97	-0.08	
4.51	393620.53	6455667.90	-0.10	
5.25	393621.27	6455667.82	-0.08	
5.85	393621.86	6455667.76	-0.08	
6.41	393622.42	6455667.70	-0.07	
7.44	393623.45	6455667.60	-0.09	
8.28	393624.29	6455667.51	-0.07	
9.12	393625.12	6455667.42	-0.07	
9.90	393625.89	6455667.34	-0.09	
10.43	393626.43	6455667.29	-0.09	
11.44	393627.43	6455667.19	-0.06	

Job Ref: 6165-358

SALTER POINT PARADE LAGOON SALTER POINT, WA, 6152

Method of Survey for Horizontal Positioning : Trimble S6 Total Station Horizontal Datum : MGA94 Z50 Method of Survey for Vertical Positioning : Trimble S6 Total Station, Trigonometry Heights Vertical Datum : AHD71 Date : 28.03.2018

 Reference Station :
 SSM APP14

 Easting : 393655.867
 Northing : 6455794.409

 Height : 1.607
 Height : 1.607

SALTER POINT PARADE LAGOON - Monitor Well Locations (28.03.2018)

Location	Coordinates		Heights			Notes /	
Identification	Easting	Northing	Ground	Top of Casing	Top of PVC Pipe	Comments	
GW1	393657.506	6455800.141	1.924	1.951	1.858	PVC Pipe in Plastic Black Case	
GW2	393549.467	6455755.032	0.719	0.742	0.594	PVC Pipe in Plastic Black Case	
GW3	393626.110	6455833.007	2.381	2.404	2.282	PVC Pipe in Plastic Black Case	

SALTER POINT PARADE LAGOON - Surface Water Logger Locations (28.03.2018) Job Ref: 6165-								
Location	Coordinates		Heights	Notes /				
Identification	Easting	Northing	Top of PVC Pipe	Comments				
SW1	393599.345	6455756.995	1.141	PVC Pipe with Cap erected in Lagoon				
SW2	393650.798	6455643.268	1.475	PVC Pipe with Cap erected in Lagoon				

Location	Coord	inates	Heights	Notes /
Identification	Easting	Northing	Top of Wooden Stake	Comments
MS1	393628.084	6455631.899	0.591	Wooden Stake Erected in Inlet
MS2	393626.095	6455636.710	0.599	Wooden Stake Erected in Inlet
MS3	393625.976	6455643.371	0.568	Wooden Stake Erected in Inlet
MS4	393623.111	6455647.451	0.594	Wooden Stake Erected in Inlet
MS5	393619.778	6455653.915	0.594	Wooden Stake Erected in Inlet
MS6	393620.006	6455662.975	0.587	Wooden Stake Erected in Inlet
MS7	393620.976	6455667.466	0.576	Wooden Stake Erected in Inlet

*NOTE: Heights taken at highest point of PVC pipe or wooden stake, marked with black pen where possible

APPENDIX 2 GROUNDWATER WELL CONSTRUCTION LOGS

	2	YI	D			Y		B	OREH	OLE		
		VIR									Р	AGE 1 OF 1
		VIRU T_City o					-	PROJECT NAME _Salter Po	nint Lanoon			
DA	TE	STARTE	D 2	3/3/18			COMPLETED _23/3/18			DATU	м	
							ng					
			n)					LOGGED BY B.W		CHEC	KED BY	
NC		\$										
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	Ma	terial Description	Samples Tests Remarks	PID (ppm)	Analysis Schedule	Additional Observations
Push				_		SW SW	SAND, medium to coarse, well graded, su SAND, fine to medium, well graded, sub-r			-1		
Direct Push				_		> >						
				1		> >						
				_		2						
				_		SW SW	SAND, fine to medium, well graded, sub-r SAND, fine to medium, well graded, sub-r					
				2		SW	SAND, fine to medium, well graded, sub-r					
				_		SW	SAND, fine to medium, well graded, sub-r					
				_		SW	SAND, fine to medium, well graded, sub-r	ounded, grey.				
				3		>						
						*						
				-	•••••	SW	SAND, fine to medium, well graded, round	ded, dark orange-dark yellow.				
				_	-		Borehole GW1 terminated at 3.6m					
				4								
				-	-							
				5								
				5								
				-	-							
				6								
				<u> </u>								
				-								
				7	1							
				<u> </u>								
				8								
				_								
				9								
				-								
				10	1							

E	N١		ЛС	ME	N٦	TAL						AGE 1 OF [·]
		City City						PROJECT NAME Salte				
DA DF EC	DATE STARTED 23/3/18 COMPLETED 23/3/18 DRILLING CONTRACTOR Edge Drilling						ng	R.L. SURFACE (m) NORTHING (m) EASTING (m)	CO-ORDIN HOLE LOO	IATE S CATION	YSTEM	le of lagoon
NC	DTES	s	1				1					
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	N	laterial Description	Samples Tests Remarks	PID (ppm)	Analysis Schedule	Additional Observation:
Direct Push						SW	SAND, medium to coarse, well graded,	sub-rounded, grey-pale yellow, some	e organic material.			
Direc	_				••••••							
							SAND WITH CLAY, medium to coarse, rich, h2s odour.		-dark brown, organi	c		
			•			PT SW	CLAY, well graded, dark brown-black, c SAND, medium to coarse, well graded,		ic material and roots	5.		
				2								
						SW	SAND, fine to medium, well graded, sub Borehole GW2 terminated at 2.5m	p-rounded, grey.				
				3			Bulendie Gwz terminated at 2.5m					
				-								
				_								
				4								
				_								
				_								
				5								
				_								
2				6								
3												
				7								
				_								
				-								
				8								
5												
5												
				9								
!				10								
й <u> </u>				10								

		YIR							BOREH	IOLE	E NUMBI	ER GW3 AGE 1 OF 1
		T <u>City o</u>										
DA DR EC HC	ATE RILLI QUIP DLE	STARTE	D _2	3/3/18 CTOR	Edg	e Drilli	COMPLETED 23/3/18	R.L. SURFACE (m) NORTHING (m) EASTING (m)	CO-ORDI HOLE LO	NATE S CATION	YSTEM	of lagoon
Method	Water	Well Details	RL (m)	Depth (m)	Graphic Log	Classification Symbol	M	aterial Description	Samples Tests Remarks	PID (ppm)	Analysis Schedule	Additional Observations
Direct Push	.					SW SW SW SW	SAND, medium to coarse, well graded, sub- SAND, fine to medium, well graded, sub- SAND, fine to medium, well graded, sub- SAND, fine to medium, well graded, sub-	rounded, pale yellow, tree roots up rounded, pale grey. rounded, brown.	to 0.3 metres.			
				<u>3</u> - - - - 4								
							Borehole GW3 terminated at 4m					

APPENDIX 3 DBCA PERMIT TO CONDUCT A SCIENTIFIC STUDY

epartment of Biodiversity,

inservation and Attractions

2018/001563 PERMIT P12159

Pursuant to Part 4 (Regulation 29) of the Swan and Canning Rivers Management Regulations 2007, this is to certify that a permit is issued to the person(s) or organisation described hereunder as permit holder and that person(s) or organisation is permitted to carry out the authorised works, acts or activities for the duration specified, subject to the conditions listed below.

Permit holder:	City of South Perth								
Authorised work	s, acts or activities:	Scientific study – 3 groundwater monitoring bores							
Location of worl	<s, activities:<="" acts="" or="" td=""><td colspan="5">Lot 300 on Plan 44440 (Reserve 23967)</td></s,>	Lot 300 on Plan 44440 (Reserve 23967)							
Approval date:	13 March 2018		Expiry date:	13 March 2019					

CONDITIONS

1. The Applicant shall ensure that all contractors and personnel involved in the works, activities, operations and/or development approved by the Department of Biodiversity, Conservation and Attractions are familiar with the conditions and requirements of this approval at all times.

Prior to the commencement of works

2. The applicant shall notify the Department of Biodiversity, Conservation and Attractions in writing not less than seven 3 days prior to the commencement of works.

During Works

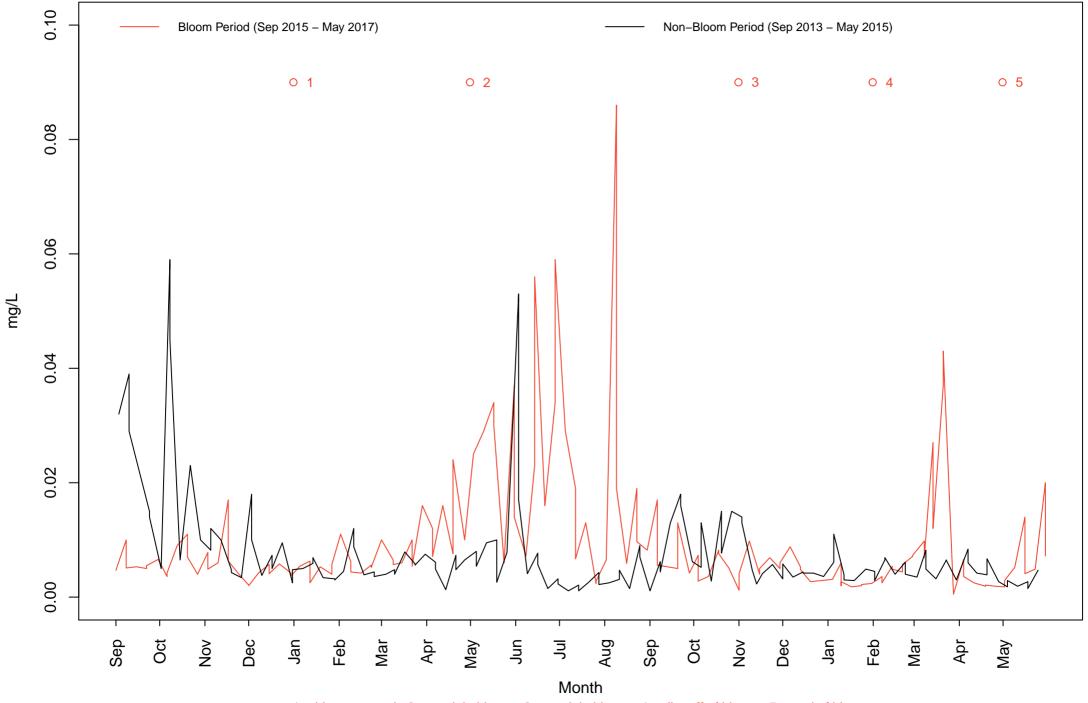
- 3. The works shall take place in accordance with the approved plans and supporting documentation provided with the permit application, unless modified by a condition of this approval.
- 4. The Applicant shall take all precautions to ensure no damage to the foreshore or water way (including infrastructure and vegetation) occurs beyond the scope of the approved works.
- 5. Should any inadvertent damage occur, the Applicant is required to notify the Department within 48 hours of that damage occurring.
- 6. The Applicant shall rectify at its expense any damage to the foreshore or water way (including infrastructure) that occurs as a result of the works.
- 7. The Applicant shall take appropriate preventative measures during the works to ensure that no construction material, top soil, runoff or deleterious matter is allowed to enter the river or Salter Point Lagoon.
- 8. A spill kit shall be maintained at the project site and shall be utilised to contain and clean up any spills. (refer advice Note 3)
- 9. Refuelling shall take place outside of the Swan Canning Development Control Area or at a licensed refuelling facility.
- 10. To prevent the spread of dieback (Phytophthora cinnamomi) and other pathogens, the applicant shall treat all soil sampling equipment and footwear immediately prior to entering each sample site (refer to Advice Note 6).
- 11. Upon completion of the works, the Applicant shall remove all waste materials, equipment and machinery and ensure the site cleaned-up to the satisfaction of the Department of Biodiversity, Conservation and Attractions, on advice from the City of South Perth.

2018/001563 PERMIT P12159

12. An electronic copy of the data and findings the Salter Point Lagoon Study approved under this permit shall be forwarded to the Department of Biodiversity, Conservation and Attractions within one (1) .month of completing the document.

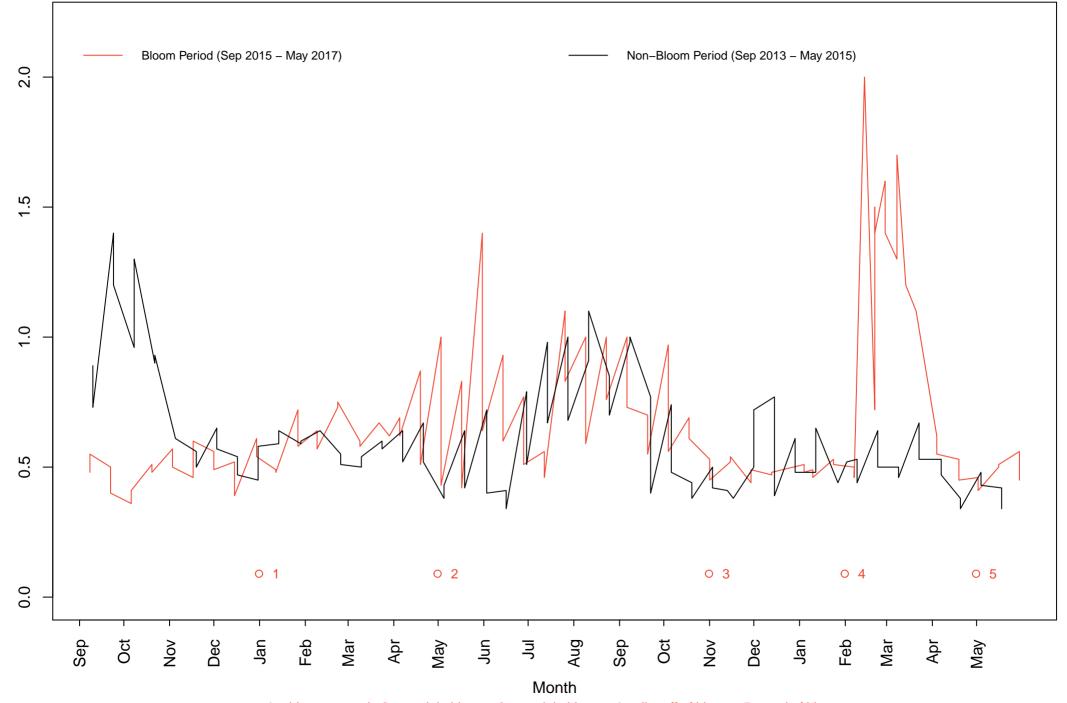
ADVICE TO APPLICANT

Department of Biodiversity,


Conservation and Attractions

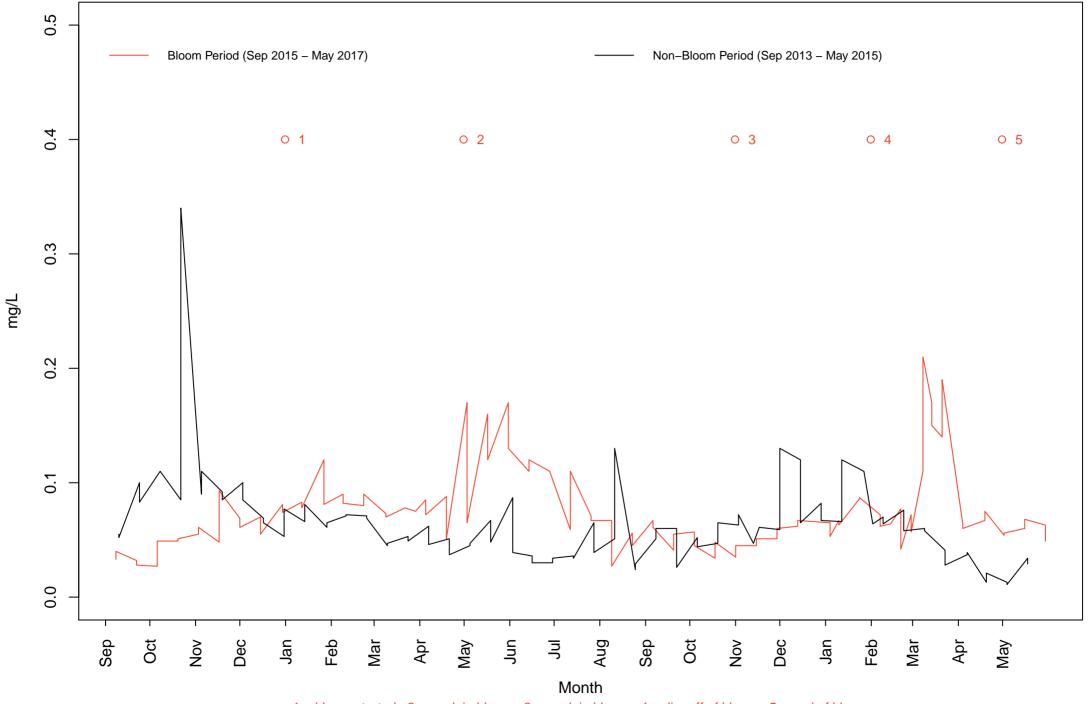
- 1. Notification of commencement of works and submission of reports required as a condition of this approval can be emailed to rivers.planning@dbca.wa.gov.au.
- 2. The Applicant is advised that this approval does not negate the need to obtain any other approval from relevant agencies, or from the Department of Biodiversity, Conservation and Attractions.
- 3. The Applicant is advised that all incidents of pollution or spills within the Development Control Area must be reported immediately to the Department of Biodiversity, Conservation and Attractions, on 9278 0900 or 0419 192 845.
- 4. The Applicant is reminded to ensure that public access to the foreshore (including the land surrounding the lagoon) is available at all times.
- 5. The applicant is advised that the proposed works is located in a high to moderate Acid Sulphate Soils risk area. The Acid Sulphate Soils Guideline Series for guidance on the identification, assessment and management of acid sulphate soils in Western Australia is available from the Department of Environment Regulation website at www.der.wa.gov.au. If any Acid Sulphate Soils are exposed during the works the Department of Environment Regulation should be contacted for further advice.
- 6. In relation to Condition 11, the applicant is advised that Dieback Hygiene guidelines outlining how to treat tools and footwear are available at <u>http://www.dieback.net.au/images/user-images/documents/dieback_hygiene_2_email_version2013.pdf</u>

PERMIT APPROVED Signed: Date: Glen McLeod Thorpe Manager, Statutory Assessments As delegate of CEO Under Section 38 of the SCRM Act 2006


APPENDIX 4 HISTORICAL WATER QUALITY IN CANNING ESTUARY AT SALTER POINT

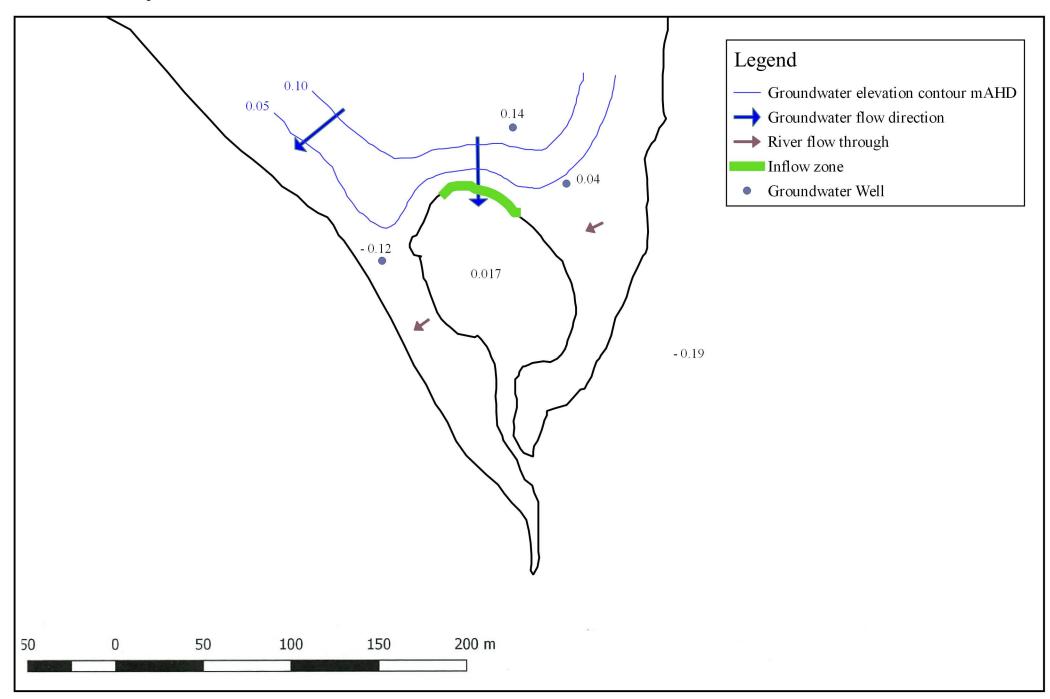
Chlorophyll a Levels: Canning Estuary (SRT site = Salter Point)

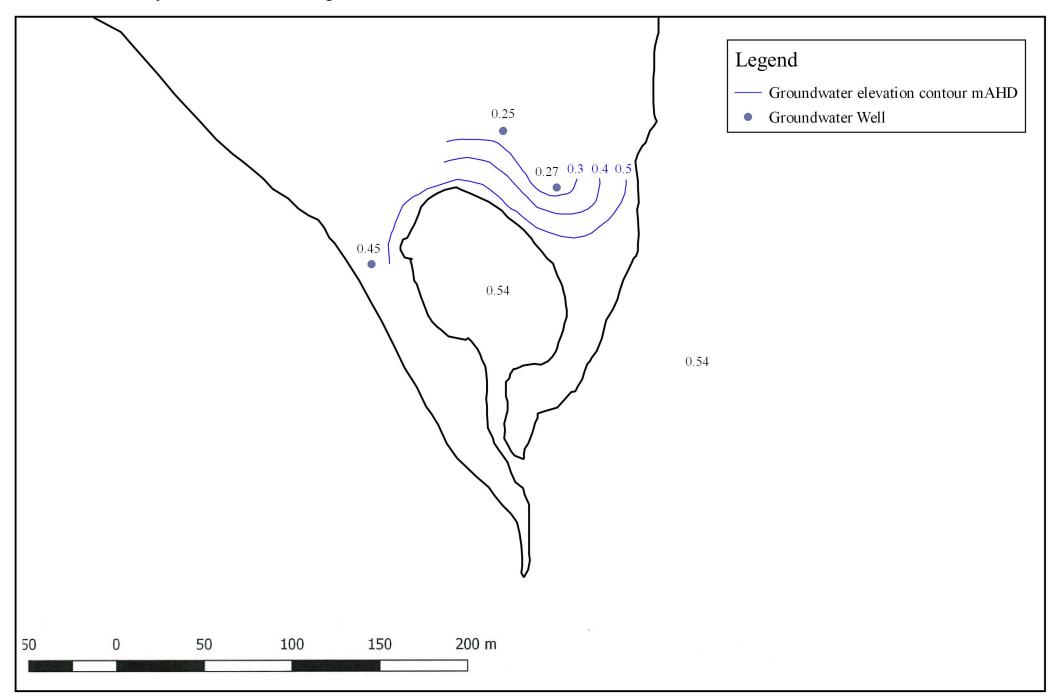
^{1 –} bloom started 2 – peak in bloom 3 – peak in bloom 4 – die–off of bloom 5 – end of bloom


Total Nitrogen Levels: Canning Estuary (SRT site = Salter Point)

mg/L

^{1 –} bloom started 2 – peak in bloom 3 – peak in bloom 4 – die–off of bloom 5 – end of bloom


Total Phosphorus Levels: Canning Estuary (SRT site = Salter Point)


1 – bloom started 2 – peak in bloom 3 – peak in bloom 4 – die–off of bloom 5 – end of bloom

APPENDIX 5 SKETCH OF GROUNDWATER FLOWS

Scenario 1: 2nd April 2018~ 6:30AM - Low Tide

Scenario 2: 6th May 2018~ 12:00PM - High Tide

APPENDIX 6 WATER AND SEDIMENT QUALITY LABORATORY REPORTS

	<u> </u>				CHAI	N OF CUSTODY								SY	
				,					Project #:	17102				environmen	tal pl
Email res	sults to: bwoodw	s@syrinx.net.au [vard@syrinx.net.au @syrinx.net.au		t] .					Project:	Salter Point Lag	goon Study			12	Monger St, Perth WA 6000
	oice to: info@sy	rinx.net.au							Laboratory	: ALS				Pho	ne: 9227 9355
	oled by: MH	inix.net.au							Address	: 26 Rigali Way,	Wangara WA 6)65		1	Fax: 9481 6299
Results re		RD TAT							Quote #	EP/360	18] Pa	age: 1 of 1
															Comments
nple Inform	ation						· ····· –		Analysis Req		<u> </u>		1		*** Additional field filtered
Lab ID	Sample ID	Sample Matrix	Sampling Time	Sampling date	pH - EA005	Nutrient Suite including FRP*** Total Nitrogen, TKN, NO,, NO ₂ , NO ₃ , NH ₃ , Total Phosphorus, Reactive Phosphorus NT-8A	Algae – Total Count - MW02470T		Total metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)	Dissolved metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)	pHF and pHFOX - EA003	TOC – Total Organic Carbon - EP003	Total Nitrogen, TKN, NO ₂ , NO ₃ , NH ₃ , TP - NT-8S		bottle provided in a marked up metals bottle for the filterable reactive phosphorus analysis.
1	5W01	WATER	see bottle	28/03/2018	~	¥			1	✓			-	<u> </u>	
2	SW02	WATER	see bottle	28/03/2018	✓	✓	1		· ·	×				— —	<u>+</u>
3	5W03	WATER	see bottle	28/03/2018	1	4	1		· · · -						<u> </u> i
4	ŞED1	SOIL	see bottle	28/03/2018					1			- V	1		<u> </u>
	SED2	SOIL	see bottle	28/03/2018					✓		· ·	1			
Ğ	SED3	SOIL	see bottle	28/03/2018					1			· ·			
·	GW01	WATER	see bottle	28/03/2018	√	✓			- V						
-1-	GW01 GW02	WATER	see bottle	28/03/2018	1	✓			1	1					
3	GW03	WATER	see bottle	28/03/2018	Ý	✓			√	4				<u> </u>	
									-						
Relinqui								Received by:	A	913/18	1180		es received		yes / no
Date	29/3/18 1							Date & time:		9/3/18	1130		<u> </u>	~	
Si	gnature: M	chow						Signature:		5		Lab da	te & signat		Environmental Division

Environmental Division

r · ·

Telephone: +61-8-9406 1301

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EP1804219		
Client Contact Address	: SYRINX ENVIRONMENTAL PL : MITCH HEDGES	Laboratory Contact Address	: Environmental Division Perth : Customer Services EP
Address	: 12 MONGER ST PERTH AUSTRALIA 6000	Address	26 Rigali Way Wangara WA Australia 6065
E-mail	: mhedges@syrinx.net.au	E-mail	: ALSEnviro.Perth@alsglobal.com
Telephone	08 9227 9355	Telephone	: +61-8-9406 1301
Facsimile	: 08 9227 5033	Facsimile	: +61-8-9406 1399
Project	: 17102 Salter Point Lagoon Study	Page	: 1 of 4
Order number	:	Quote number	: EP2018SYRENV0001 (EP/360/18)
C-O-C number	:	QC Level	: NEPM 2013 B3 & ALS QC Standard
Site	:		
Sampler	: MITCH HEDGES		

Date Samples Received Client Requested Due Date	: 29-Mar-2018 11:30 : 13-Apr-2018	Issue Date Scheduled Reporting Date	: 29-Mar-2018 : 13-Apr-2018
Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	: -7/3.4 - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 9/9

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- TOC and FRP analysis will be conducted by ALS Environmental, Brisbane, NATA accreditation no. 825, Site No. 818.
- Algae analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911.
- pH analysis should be conducted within 6 hours of sampling.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Dissolved Reactive Phosphorus	s as P by DA : EK071FG	
SW01	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
SW02	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
SW03	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
GW01	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
GW02	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
GW03	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural

₽

Ţ

2, NO3, NOX, TKN,

F-8S

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - N ⁻ NH3, NO
EP1804219-004	28-Mar-2018 00:00	SED1	✓
EP1804219-005	28-Mar-2018 00:00	SED2	1
EP1804219-006	28-Mar-2018 00:00	SED3	1

Matrix: SOIL Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - EA003 pH field/fox	SOIL - EA055-103 Moisture Content	SOIL - EG005-SD Total Iron and Aluminium in Sediments by	SOIL - EG020-SD Total Metals in Sediments by ICPMS (NODG)	SOIL - EG035-SD Mercury in Sediments by FIMS (NODG-required	SOIL - EP003 Total Organic Carbon (TOC) in Soil	
EP1804219-004	28-Mar-2018 00:00	SED1	1	✓	✓	✓	1	✓	
EP1804219-005	28-Mar-2018 00:00	SED2	1	1	1	✓	1	✓	
EP1804219-006	28-Mar-2018 00:00	SED3	✓	✓	✓	✓	✓	✓	

Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EA005P pH (PCT)	WATER - EK071FG Dissolved Reactive Phosphorus as P	WATER - MW024_TOT Total Algae Count	WATER - NT-08A Total Nitrogen + NO2 + NO3 + NH3 + Total P +	WATER - W-30 11 Metals	WATER - W-30T 11 Metals (Total)
EP1804219-001	28-Mar-2018 00:00	SW01	✓	✓	1	1	1	✓
EP1804219-002	28-Mar-2018 00:00	SW02	✓	✓	✓	1	✓	✓
EP1804219-003	28-Mar-2018 00:00	SW03	 ✓	✓	✓	✓	✓	✓
EP1804219-007	28-Mar-2018 00:00	GW01	✓	✓		1	✓	1
EP1804219-008	28-Mar-2018 00:00	GW02	 ✓	✓		✓	✓	✓
EP1804219-009	28-Mar-2018 00:00	GW03	✓	✓		1	1	✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER				Evaluation: × = Ho	olding time bre	each ; 🗸 = Withi	in holding time.				
Method		Due for	Due for	Samples R	eceived	Instructions Received					
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation				
EA005-P: pH by PC Titrator											
GW01	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						
GW02	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						
GW03	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						
SW01	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						
SW02	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						
SW03	Clear Plastic Bottle - Natural		28-Mar-2018	29-Mar-2018	×						

ALS

Requested Deliverables

bwoodward

 *AU Certificate of Analysis - NATA (COA) 	Email	bwoodward@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bwoodward@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	bwoodward@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bwoodward@syrinx.net.au
- Attachment - Report (SUBCO)	Email	bwoodward@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	bwoodward@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	bwoodward@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	bwoodward@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	bwoodward@syrinx.net.au
INVOICES INFO		
- A4 - AU Tax Invoice (INV)	Email	info@syrinx.net.au
LJILJANA PANTELIC		
 *AU Certificate of Analysis - NATA (COA) 	Email	lpantelic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lpantelic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lpantelic@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	lpantelic@syrinx.net.au
- Attachment - Report (SUBCO)	Email	lpantelic@syrinx.net.au
 Chain of Custody (CoC) (COC) 	Email	lpantelic@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	lpantelic@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	lpantelic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lpantelic@syrinx.net.au
MITCH HEDGES		
 *AU Certificate of Analysis - NATA (COA) 	Email	mhedges@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mhedges@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mhedges@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	mhedges@syrinx.net.au
 Attachment - Report (SUBCO) 	Email	mhedges@syrinx.net.au
 Chain of Custody (CoC) (COC) 	Email	mhedges@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	mhedges@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	mhedges@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	mhedges@syrinx.net.au

CERTIFICATE OF ANALYSIS Work Order : EP1804219 Page : 1 of 8 Amendment :1 Client Laboratory : SYRINX ENVIRONMENTAL PL : Environmental Division Perth : Customer Services EP Contact : MITCH HEDGES Contact Address Address : 26 Rigali Way Wangara WA Australia 6065 : 12 MONGER ST PERTH AUSTRALIA 6000 Telephone : 08 9227 9355 Telephone : +61-8-9406 1301 Project : 17102 Salter Point Lagoon Study **Date Samples Received** : 29-Mar-2018 11:30 Order number Date Analysis Commenced : 29-Mar-2018 C-O-C number Issue Date : 16-Apr-2018 16:45 · ____ Sampler : MITCH HEDGES Site · ----Quote number : EP/360/18 Accreditation No. 825 No. of samples received : 9 Accredited for compliance with

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 9

General Comments

No. of samples analysed

Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

ISO/IEC 17025 - Testing

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA	
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA	
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA	
Jeremy Truong	Laboratory Manager	Perth Inorganics, Wangara, WA	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- TOC and FRP conducted by ALS Brisbane, NATA Site No. 818.
- Algae conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- EK067G (Total Phosphorus): Poor spike recovery due to possible sample heterogeneity. Confirmed by re-extraction and re-analysis.
- EG020: Metals LOR for particular sample(s) raised due to high TDS content.
- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- Amendment (16/04/2018): This report has been amended to include sampling times. All analysis results are as per the previous report.
- Sample 'Sed1' & 'Sed2' results reported as received due to high moisture content.
- ASS: EA003 (NATA Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	SED1	SED2	SED3					
	Cli	ient sampl	ing date / time	28-Mar-2018 17:15	28-Mar-2018 16:45	28-Mar-2018 15:45					
Compound	CAS Number	LOR	Unit	EP1804219-004	EP1804219-005	EP1804219-006					
				Result	Result	Result					
EA003 :pH (field/fox)											
pH (F)		0.1	pH Unit	7.8	7.5	8.4					
pH (Fox)		0.1	pH Unit	2.6	2.7	2.4					
Reaction Rate		1	Reaction Unit	2	2	3					
EA055: Moisture Content (Dried @	2 105-110°C)										
Moisture Content		1.0	%	94.6	92.8	48.5					
EG005-SD: Total Metals in Sedime	nts by ICP-AES										
Aluminium	7429-90-5	50	mg/kg	160	590	2860					
Iron	7439-89-6	50	mg/kg	410	1580	8250					
EG020-SD: Total Metals in Sedime	EG020-SD: Total Metals in Sediments by ICPMS										
Arsenic	7440-38-2	1.00	mg/kg	<1.00	<1.00	3.73					
Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.2					
Chromium	7440-47-3	1.0	mg/kg	<1.0	1.3	7.2					
Copper	7440-50-8	1.0	mg/kg	<1.0	2.9	11.7					
Lead	7439-92-1	1.0	mg/kg	<1.0	2.9	14.6					
Nickel	7440-02-0	1.0	mg/kg	<1.0	<1.0	3.0					
Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	0.4					
Zinc	7440-66-6	1.0	mg/kg	5.1	17.8	81.9					
EG035T: Total Recoverable Mercu	ary by FIMS										
Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.03					
EK055: Ammonia as N											
Ammonia as N	7664-41-7	20	mg/kg	<20	<20	<20					
EK057G: Nitrite as N by Discrete	Analyser		i i i								
Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	<0.1					
EK058G: Nitrate as N by Discrete	Analyser										
Nitrate as N (Sol.)	14797-55-8	0.1	mg/kg	<0.1	<0.1	<0.1					
EK059G: Nitrite plus Nitrate as N		lysor									
Nitrite + Nitrate as N (Sol.)	INOXY BY DISCICLE Alla	0.1	mg/kg	<0.1	<0.1	<0.1					
EK061G: Total Kjeldahl Nitrogen B	Ry Discroto Analyser		55								
Total Kjeldahl Nitrogen as N	Sy Discrete Analyser	20	mg/kg	490	970	1460					
		20	mgring			1400					
EK062: Total Nitrogen as N (TKN + ^ Total Nitrogen as N		20	mg/kg	490	970	1460					
-		20	iiig/kg	430	310	1400					
EK067G: Total Phosphorus as P b	y Discrete Analyser		maller	74	400	470					
Total Phosphorus as P		2	mg/kg	71	168	172					

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SED1	SED2	SED3					
	ent samplii	ng date / time	28-Mar-2018 17:15	28-Mar-2018 16:45	28-Mar-2018 15:45						
Compound	CAS Number	LOR	Unit	EP1804219-004	EP1804219-005	EP1804219-006					
				Result	Result	Result					
EP003: Total Organic Carbon (TOC) in So	EP003: Total Organic Carbon (TOC) in Soil										
Total Organic Carbon		0.02	%	3.69	6.98	5.77					

Gub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	GW01	GW02
	C	lient sampli	ng date / time	28-Mar-2018 17:15	28-Mar-2018 16:45	28-Mar-2018 15:45	28-Mar-2018 12:40	28-Mar-2018 10:50
Compound	CAS Number	LOR	Unit	EP1804219-001	EP1804219-002	EP1804219-003	EP1804219-007	EP1804219-008
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	8.79	8.34	7.93	6.44	6.45
EG020F: Dissolved Metals by IC	CP-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.05	<0.05	<0.05	0.02	0.05
Arsenic	7440-38-2	0.001	mg/L	<0.005	<0.005	<0.005	0.004	<0.005
Cadmium	7440-43-9	0.0001	mg/L	<0.0005	<0.0005	<0.0005	<0.0001	<0.0005
Chromium	7440-47-3	0.001	mg/L	<0.005	<0.005	<0.005	<0.001	<0.005
Copper	7440-50-8	0.001	mg/L	<0.005	<0.005	<0.005	<0.001	<0.005
Nickel	7440-02-0	0.001	mg/L	<0.005	<0.005	<0.005	0.001	<0.005
Lead	7439-92-1	0.001	mg/L	<0.005	<0.005	<0.005	<0.001	<0.005
Selenium	7782-49-2	0.01	mg/L	<0.05	<0.05	<0.05	<0.01	<0.05
Zinc	7440-66-6	0.005	mg/L	<0.025	<0.025	<0.025	<0.005	0.026
Iron	7439-89-6	0.05	mg/L	<0.25	<0.25	<0.25	2.49	1.07
G020T: Total Metals by ICP-M	S							
Aluminium	7429-90-5	0.01	mg/L	0.10	0.11	0.14	13.6	0.49
Arsenic	7440-38-2	0.001	mg/L	<0.005	<0.005	<0.005	0.031	<0.005
Cadmium	7440-43-9	0.0001	mg/L	<0.0005	<0.0005	<0.0005	0.0001	<0.0005
Chromium	7440-47-3	0.001	mg/L	<0.005	<0.005	<0.005	0.045	0.008
Copper	7440-50-8	0.001	mg/L	<0.005	<0.005	<0.005	0.016	<0.005
Nickel	7440-02-0	0.001	mg/L	<0.005	<0.005	<0.005	0.011	<0.005
Lead	7439-92-1	0.001	mg/L	<0.005	<0.005	<0.005	0.018	<0.005
Selenium	7782-49-2	0.01	mg/L	<0.05	<0.05	<0.05	<0.01	<0.05
Zinc	7440-66-6	0.005	mg/L	<0.025	<0.025	<0.025	0.006	<0.025
Iron	7439-89-6	0.05	mg/L	<0.25	<0.25	0.32	14.1	2.11
G035F: Dissolved Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G035T: Total Recoverable Me	rcury by FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
K055G: Ammonia as N by Disc	crete Analyser							
Ammonia as N	7664-41-7	0.01	mg/L	0.17	0.39	0.07	0.16	0.43
K057G: Nitrite as N by Discret								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discre								
Nitrate as N	14797-55-8	0.01	mg/L	<0.01	0.01	<0.01	0.02	<0.01
	N (NOx) by Discrete Ana		<u>9</u> , E		0.01	0.01	0.02	0.01

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	GW01	GW02
	Cli	ent sampli	ng date / time	28-Mar-2018 17:15	28-Mar-2018 16:45	28-Mar-2018 15:45	28-Mar-2018 12:40	28-Mar-2018 10:50
Compound	CAS Number	LOR	Unit	EP1804219-001	EP1804219-002	EP1804219-003	EP1804219-007	EP1804219-008
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NO»	() by Discrete Anal	yser - Co	ntinued					
Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.01	<0.01	0.02	<0.01
EK061G: Total Kjeldahl Nitrogen By Di	screte Analyser						-	
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.8	0.6	0.9	1.0
EK062G: Total Nitrogen as N (TKN + N	Ox) by Discrete An	alyser						
^ Total Nitrogen as N		0.1	mg/L	0.9	0.8	0.6	0.9	1.0
EK067G: Total Phosphorus as P by Dis	screte Analyser							
Total Phosphorus as P		0.01	mg/L	0.10	0.09	0.08	0.46	0.09
EK071FG: Dissolved Reactive Phosph	orus as P by DA							
Dissolved Reactive Phosphorus as P		0.01	mg/L	<0.01	0.02	0.01	<0.01	0.02
EK071G: Reactive Phosphorus as P by	discrete analyser							
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.02	0.02	<0.01	<0.01

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	GW03	 	
	Cl	ient sampli	ng date / time	28-Mar-2018 14:20	 	
Compound	CAS Number	LOR	Unit	EP1804219-009	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.07	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.02	 	
Arsenic	7440-38-2	0.001	mg/L	0.006	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	0.002	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
Iron	7439-89-6	0.05	mg/L	1.91	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	8.15	 	
Arsenic	7440-38-2	0.001	mg/L	0.024	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0002	 	
Chromium	7440-47-3	0.001	mg/L	0.034	 	
Copper	7440-50-8	0.001	mg/L	0.010	 	
Nickel	7440-02-0	0.001	mg/L	0.012	 	
Lead	7439-92-1	0.001	mg/L	0.007	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.006	 	
Iron	7439-89-6	0.05	mg/L	10.3	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK055G: Ammonia as N by Discrete A						
Ammonia as N	7664-41-7	0.01	mg/L	0.11	 	
EK057G: Nitrite as N by Discrete Ana					I	
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	 	
		0.01		-0.01		-
EK058G: Nitrate as N by Discrete Ana Nitrate as N		0.01	mc/l	0.24		
	14797-55-8		mg/L	0.24	 	
EK059G: Nitrite plus Nitrate as N (NO	0x) by Discrete Ana	lyser				

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	GW03	 	
	Cli	ent sampli	ng date / time	28-Mar-2018 14:20	 	
Compound	CAS Number	LOR	Unit	EP1804219-009	 	
				Result	 	
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Ana	yser - Co	ntinued			
Nitrite + Nitrate as N		0.01	mg/L	0.24	 	
EK061G: Total Kjeldahl Nitrogen By Dis	crete Analyser					
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	 	
EK062G: Total Nitrogen as N (TKN + NC	x) by Discrete An	alyser				
^ Total Nitrogen as N		0.1	mg/L	1.1	 	
EK067G: Total Phosphorus as P by Dis	crete Analyser					
Total Phosphorus as P		0.01	mg/L	0.17	 	
EK071FG: Dissolved Reactive Phospho	rus as P by DA					
Dissolved Reactive Phosphorus as P		0.01	mg/L	<0.01	 	
EK071G: Reactive Phosphorus as P by	discrete analyser					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	 	

CERTIFICATE OF ANALYSIS

Client:	SYRIN	ALS Work Order:	EP1804219
Address:	12 Monger St., Perth WA	Laboratory:	ALS Environmental Sydney
		Date Sampled:	28/03/2018
Attention:	M. Hedges	Date Received:	4/04/2018
		Date Analysed:	9/04/2018
Quote:	EP/360/18	Sample Type:	AQUEOUS
Project:	17102- Salter Point Lagoon Study	No. of Samples:	3

PHYTOPLANKTON IDENTIFICATION & ENUMERATION CYANOPHYTE BIOVOLUME MEASUREMENTS

Comments:

Under microscopic observation, debris present in sample #02 and #03

NOTES

Samples were preserved with Lugols lodine solution. Samples were analysed in accordance with ALS Quality Work Instruction QWI-MIC/MW024-25 Biovolume measurements (when required) are conducted on Lugol preserved samples unless indicated otherwise.

Results apply to sample(s) as submitted. PTP=Potential Toxin Producers <5 or ND=Not Detected NS=Not Specified cf. = comparable from Cell's with Biovolume ≤0.001 will not be reported Dr. Sunitha Kannampilli Phycologist (Signatory)

Date Reported: 12/04/2018

277 Woodpark Road, Smithfield, Sydney NSW 2164 Australia +612 87848555 ALS Water Resources Group An ALS Limited Company www.alsglobal.com

ALS sample ID:	EP1804219001	EP1804219002	EP1804219003
Client sample ID:	SW01	SW02	SW03
Sample Date:	28/03/2018	28/03/2018	28/03/2018
Sample Date.	5:15	4:45	3:45
Units	Cells/mL	Cells/mL	Cells/mL
CYANOPHYTES (Blue Green algae)	OCII3/IIIE	OCII3/IIIL	OCII3/IIIE
Chroococcales			
Total Chroococcales	ND	ND	ND
Nostocales			ND
Total Nostocales	ND	ND	ND
	ND	ND	ND
Oscillatoriales	ND	ND	ND
Total Oscillatoriales	ND	ND	ND
Stigonematales			
Total Stigonematales	ND	ND	ND
Total Potentially Toxic Cyanophytes	ND	ND	ND
Total Cyanophytes	ND	ND	ND
CHLOROPHYTES (Green algae)			
Carteria spp.	25	ND	ND
Chlamydomonas spp.	75	100	25
Oocystis spp.	25	ND	ND
Scenedesmus spp.	25	ND	ND
Total Chlorophytes	150	100	25
FLAGELLATES			
Euglenophytes			
Euglena spp.	ND	25	ND
Pyrrophytes			
Ceratium spp.	ND	25	ND
Gymnodinium spp.	125	125	150
Peridinium spp.	200	75	100
Cryptophytes			
Chroomonas spp.	722	50	ND
Cryptomonas spp.	75	125	25
Total Flagellates	1122	425	275
Golden/Yellow Green Algae			
Total Golden/yellow green algae	ND	ND	ND
Haptophytes			
Total Haptophytes	ND	ND	ND
RAPHIDOPHYTES			
Total Raphidophytes	ND	ND	ND
BACILLARIOPHYTES (Diatoms)			
Centrales Chaetoceros spp.	225	25	25
Cyclotella spp.	50	ND	ND 25
Rhizosolenia spp.	ND	5	10
Pennales	שאו		10
Navicula spp.	ND	100	ND
Navicula spp. Nitzschia spp.	25	50	50
Synedra spp.	ND	50	ND
Thalassionema spp.	ND	15	5
Total Bacillariophytes	300	245	90
Total Potentially Toxic Algae	ND	ND	ND
TOTAL ALGAE COUNT	1572	770	390

277 Woodpark Road, Smithfield, Sydney NSW 2164 Australia +612 87848555 ALS Water Resources Group An ALS Limited Company www.alsglobal.com

QUALITY CONTROL REPORT

Work Order	: EP1804219	Page	: 1 of 10	
Amendment	: 1			
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Pe	erth
Contact	: MITCH HEDGES	Contact	: Customer Services EP	
Address	: 12 MONGER ST	Address	: 26 Rigali Way Wangara V	VA Australia 6065
	PERTH AUSTRALIA 6000			
Telephone	: 08 9227 9355	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 29-Mar-2018	AMILIU.
Order number	:	Date Analysis Commenced	: 29-Mar-2018	
C-O-C number	:	Issue Date	: 16-Apr-2018	
Sampler	: MITCH HEDGES			HAC-MRA NATA
Site	:			
Quote number	: EP/360/18			Approximation No. 025
No. of samples received	: 9			Accreditation No. 825 Accredited for compliance with
No. of samples analysed	: 9			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD	
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA	
Daniel Fisher	Inorganics Analyst	Perth ASS, Wangara, WA	
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA	
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA	
Jeremy Truong	Laboratory Manager	Perth Inorganics, Wangara, WA	
Kim McCabe	Senior Inorganic Chemist	Brisbane Inorganics, Stafford, QLD	

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA003 :pH (field/fox	(QC Lot: 1565986)								
EP1804219-004	SED1	EA003: pH (F)		0.1	pH Unit	7.8	7.8	0.00	0% - 20%
		EA003: pH (Fox)		0.1	pH Unit	2.6	2.7	0.00	0% - 20%
		EA003: Reaction Rate		1	Reaction Unit	2	2	0.00	No Limit
EA055: Moisture Co	ontent (Dried @ 105-110°	°C) (QC Lot: 1547765)							
EP1804219-004	SED1	EA055: Moisture Content		0.1	%	94.6	95.0	0.375	0% - 20%
EP1804359-001	Anonymous	EA055: Moisture Content		0.1	%	1.4	1.2	12.4	No Limit
EG005-SD: Total Me	etals in Sediments by IC	P-AES (QC Lot: 1547760)							
EP1804219-004	SED1	EG005-SD: Aluminium	7429-90-5	50	mg/kg	160	170	0.00	No Limit
		EG005-SD: Iron	7439-89-6	50	mg/kg	410	430	5.10	No Limit
EG020-SD: Total Me	etals in Sediments by IC	PMS (QC Lot: 1547759)							
EP1804219-004	SED1	EG020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Selenium	7782-49-2	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
		EG020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	<1.00	0.00	No Limit
		EG020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	<1.0	0.00	No Limit
		EG020-SD: Copper	7440-50-8	1	mg/kg	<1.0	<1.0	0.00	No Limit
		EG020-SD: Lead	7439-92-1	1	mg/kg	<1.0	<1.0	0.00	No Limit
		EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	<1.0	0.00	No Limit
		EG020-SD: Zinc	7440-66-6	1	mg/kg	5.1	5.4	5.57	No Limit
EG035T: Total Reco	overable Mercury by FIN	IS (QC Lot: 1547758)							
EP1804219-004	SED1	EG035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	<0.01	0.00	No Limit
EK055: Ammonia as	s N (QC Lot: 1541205)								
EP1803862-002	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EP1803862-051	Anonymous	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
K055: Ammonia as	s N (QC Lot: 1541206)								

Page	: 3 of 10
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK055: Ammonia as	s N (QC Lot: 1541206) -	continued							
EP1804219-005	SED2	EK055: Ammonia as N	7664-41-7	20	mg/kg	<20	<20	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyser	(QC Lot: 1547763)							
EP1804219-004	SED1	EK057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK059G: Nitrite plu	s Nitrate as N (NOx) by	Discrete Analyser (QC Lot: 1547764)							
EP1804219-004	SED1	EK059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EK061G: Total Kjelc	ahl Nitrogen By Discrete	e Analyser (QC Lot: 1548035)							
EP1804219-004	SED1	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	490	520	6.93	0% - 20%
EP1804275-008	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		20	mg/kg	100	90	11.5	No Limit
EK067G: Total Phos	sphorus as P by Discrete	Analyser (QC Lot: 1548034)							
EP1804219-004	SED1	EK067G: Total Phosphorus as P		2	mg/kg	71	76	7.07	0% - 20%
EP1804275-008	Anonymous	EK067G: Total Phosphorus as P		2	mg/kg	237	250	5.48	0% - 20%
EP003: T <u>otal Organ</u> i	ic Carbon (TOC) in Soil								
EB1808617-001	Anonymous	EP003: Total Organic Carbon		0.02	%	33.9	34.3	1.06	0% - 20%
Sub-Matrix: WATER	-					Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	Titrator (QC Lot: 155069			-					
EP1804219-001	SW01	EA005-P: pH Value		0.01	pH Unit	8.79	8.93	1.58	0% - 20%
EP1804392-005	Anonymous	EA005-P: pH Value		0.01	pH Unit	8.90	8.94	0.448	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC L				•		1		
EP1804219-001	SW01	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0005	<0.0005	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.025	<0.025	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.25	<0.25	0.00	No Limit
EP1804423-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.207	0.208	0.260	0% - 20%
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	11.2	11.0	0.953	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	1.46	1.46	0.455	0% - 20%
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.038	0.039	0.00	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	59.5	59.0	0.956	0% - 20%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.02	0.02	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit

Page	: 4 of 10
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report	•	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	als by ICP-MS (QC Lot	t: 1561449)							
EP1804219-001	SW01	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0005	<0.0005	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.025	<0.025	0.00	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.10	0.14	39.8	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.05	<0.05	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.25	<0.25	0.00	No Limit
EP1804423-005	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	0.200	0.199	0.820	0% - 20%
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.002	0.002	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	11.0	11.0	0.354	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	1.40	1.40	0.00	0% - 20%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.039	0.039	0.00	0% - 20%
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	58.6	57.9	1.24	0% - 20%
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.20	0.17	17.4	0% - 20%
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.26	0.24	8.86	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	C Lot: 1558347)							
EP1804219-003	SW03	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1804423-006	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Rec	overable Mercury by F	FIMS (QC Lot: 1561456)							
EP1804219-003	SW03	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1804423-007	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Anal	lyser (QC Lot: 1562613)							
EP1804414-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	29.2	29.8	2.01	0% - 20%
EP1804219-001	SW01	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.17	0.16	7.95	0% - 50%
EK057G: Nitrite as	N by Discrete Analyse								
EP1804203-002	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1804219-002	SW02	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite pl	us Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 1562614)							
EP1804414-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	4.65	4.80	3.32	0% - 20%
EP1804219-001	SW01	EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK061G: Total Kjel	dahl Nitrog <u>en By Disc</u> i	rete Analyser (QC Lot: 1559009)							
EP1804219-001	SW01	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9	0.6	37.1	No Limit
EP1804400-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	2.9	2.9	0.00	0% - 20%
EK067G: Total Pho	sphorus as P by Discr	rete Analyser (QC Lot: 1559008)			_				1

Page	5 of 10
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	17102 Salter Point Lagoon Study

Sub-Matrix: WATER						Laboratory D	ouplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK067G: Total Phos	phorus as P by Discrete Ana	lyser (QC Lot: 1559008) - continued							
EP1804219-001	SW01	EK067G: Total Phosphorus as P		0.01	mg/L	0.10	0.05	73.1	No Limit
EP1804400-003	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.10	0.10	0.00	0% - 50%
EK071FG: Dissolved	Reactive Phosphorus as P	by DA (QC Lot: 1544387)							
EP1804219-001	SW01	EK071FG: Dissolved Reactive Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK071G: Reactive P	hosphorus as P by discrete a	analyser (QC Lot: 1534927)							
EP1804203-002	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1804219-002	SW02	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.02	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
lethod: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
G005-SD: Total Metals in Sediments by ICP-AES	(QCLot: 1547760)							
G005-SD: Aluminium	7429-90-5	50	mg/kg	<50				
G005-SD: Iron	7439-89-6	50	mg/kg	<50				
G020-SD: Total Metals in Sediments by ICPMS(QCLot: 1547759)							
G020-SD: Arsenic	7440-38-2	1	mg/kg	<1.00	21.62091 mg/kg	111	74	130
G020-SD: Cadmium	7440-43-9	0.1	mg/kg	<0.1	4.6838 mg/kg	105	97	113
G020-SD: Chromium	7440-47-3	1	mg/kg	<1.0	33.904 mg/kg	108	72	152
G020-SD: Copper	7440-50-8	1	mg/kg	<1.0	33.782 mg/kg	94.7	76	116
G020-SD: Lead	7439-92-1	1	mg/kg	<1.0	40.33169 mg/kg	96.5	74	124
EG020-SD: Nickel	7440-02-0	1	mg/kg	<1.0	51.10088 mg/kg	104	81	135
EG020-SD: Selenium	7782-49-2	0.1	mg/kg	<0.1				
G020-SD: Zinc	7440-66-6	1	mg/kg	<1.0	61.70999 mg/kg	104	81	143
G035T: Total Recoverable Mercury by FIMS (Q0	CLot: 1547758)							
G035T-LL: Mercury	7439-97-6	0.01	mg/kg	<0.01	2.154 mg/kg	106	80	120
K055: Ammonia as N (QCLot: 1541205)								
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	96.8	70	130
K055: Ammonia as N (QCLot: 1541206)								
K055: Ammonia as N	7664-41-7	20	mg/kg	<20	50 mg/kg	93.2	70	130
K057G: Nitrite as N by Discrete Analyser (QCLo	ot: 1547763)							
K057G: Nitrite as N (Sol.)	14797-65-0	0.1	mg/kg	<0.1	2.5 mg/kg	102	89	121
K059G: Nitrite plus Nitrate as N (NOx) by Discre	oto Analysor (OCI of: 154)	764)						
K059G: Nitrite + Nitrate as N (Sol.)		0.1	mg/kg	<0.1	2.5 mg/kg	95.4	90	112
	(OCL -4: 4540025)	0.1		0.1				
K061G: Total Kjeldahl Nitrogen By Discrete Ana	lyser (QCLot: 1548035)	20	malka	<20	1000 mg/kg	85.6	78	112
K061G: Total Kjeldahl Nitrogen as N		20	mg/kg	<20	1000 mg/kg	90.7	78	112
				~20	100 mg/kg	30.7	10	100
K067G: Total Phosphorus as P by Discrete Anal	yser (QCLot: 1548034)	2	malka		140 ma/ka	00.6	78	109
K067G: Total Phosphorus as P		2	mg/kg	<2 <2	440 mg/kg 44 mg/kg	90.6 101	78	108 130
				~2	44 mg/kg	101	70	150
P003: Total Organic Carbon (TOC) in Soil (QCLo	,	0.02	0/	10.00	47.54.0/	00.5	70	400
P003: Total Organic Carbon		0.02	%	<0.02	17.51 %	98.5	70	130
ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High

Page	: 7 of 10
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
A005P: pH by PC Titrator(QCLot: 1550693) - c	ontinued							
A005-P: pH Value			pH Unit		4 pH Unit	100	99	102
					7 pH Unit	99.7	99	102
G020F: Dissolved Metals by ICP-MS (QCLot: 15	558348)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.4	84	120
G020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	102	84	120
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	100	86	120
G020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	91.3	85	120
G020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.3	84	120
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.3	85	120
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.4	84	120
G020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	99.0	88	120
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	103	89	120
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	98.2	84	120
G020T: Total Metals by ICP-MS (QCLot: 156144	9)							
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	93.6	84	120
G020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	97.2	85	120
G020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	96.0	84	120
G020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	92.9	85	120
G020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	92.8	83	120
G020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	93.8	86	120
G020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	97.2	83	120
G020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	96.1	83	120
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	95.5	84	120
G020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	93.6	77	120
EG035F: Dissolved Mercury by FIMS (QCLot: 15	58347)							
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	98.9	92	116
EG035T: Total Recoverable Mercury by FIMS (Q	CL of: 1561456)		-					
G035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	109	87	115
			5		5		-	
EK055G: Ammonia as N by Discrete Analyser (Q EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	102	87	115
		0.01	ing/L	-0.01	T mg/E	102	61	110
K057G: Nitrite as N by Discrete Analyser (QCL	ot: 1534928) 14797-65-0	0.01	ma/l	<0.01	0.5 mg/l	102	86	112
K057G: Nitrite as N			mg/L	×0.01	0.5 mg/L	102	00	112
K059G: Nitrite plus Nitrate as N (NOx) by Discr								
K059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	95.4	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Ana	lyser (QCLot: 1559009)							
K061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	85.6	82	110

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS I	Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 15	59008) - d	continued						
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	93.9	70	130
EK071FG: Dissolved Reactive Phosphorus as P by DA (QCLot: 15	544387)							
EK071FG: Dissolved Reactive Phosphorus as P		0.01	mg/L	<0.01	0.5 mg/L	94.0	88	115
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot:	1534927))						
EK071G: Reactive Phosphorus as P 14265	5-44-2	0.01	mg/L	<0.01	0.5 mg/L	97.4	87	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005-SD: Total N	letals in Sediments by ICP-AES (QCLot: 154	47760)					
EP1804219-005	SED2	EG005-SD: Aluminium	7429-90-5	50 mg/kg	# Not Determined	70	130
		EG005-SD: Iron	7439-89-6	50 mg/kg	# Not Determined	70	130
EG020-SD: Total N	letals in Sediments by ICPMS (QCLot: 1547	759)					
EP1804219-005	SED2	EG020-SD: Arsenic	7440-38-2	50 mg/kg	96.2	70	130
		EG020-SD: Cadmium	7440-43-9	50 mg/kg	93.2	70	130
		EG020-SD: Chromium	7440-47-3	50 mg/kg	93.4	70	130
		EG020-SD: Copper	7440-50-8	50 mg/kg	82.2	70	130
		EG020-SD: Lead	7439-92-1	50 mg/kg	87.6	70	130
		EG020-SD: Nickel	7440-02-0	50 mg/kg	91.5	70	130
		EG020-SD: Selenium	7782-49-2	10 mg/kg	99.1	70	130
		EG020-SD: Zinc	7440-66-6	50 mg/kg	93.2	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 154775	8)					
EP1804219-005	SED2	EG035T-LL: Mercury	7439-97-6	10 mg/kg	97.7	70	130
EK055: Ammonia	as N (QCLot: 1541205)						
EP1803862-004	Anonymous	EK055: Ammonia as N	7664-41-7	50 mg/kg	87.2	70	130
EK055: Ammonia a	as N (QCLot: 1541206)						
EP1804219-006	SED3	EK055: Ammonia as N	7664-41-7	50 mg/kg	94.7	70	130
EK057G: Nitrite as	s N by Discrete Analyser (QCLot: 1547763)						
EP1804219-005	SED2	EK057G: Nitrite as N (Sol.)	14797-65-0	3 mg/kg	90.5	70	130

				101	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
K059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 1547764) - continued					
EP1804219-005	SED2	EK059G: Nitrite + Nitrate as N (Sol.)		3 mg/kg	85.3	70	130
EK061G: Total Kie	eldahl Nitrogen By Discrete Analyser (QCLot:	1548035)					
EP1804275-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		500 mg/kg	93.3	70	130
	osphorus as P by Discrete Analyser (QCLot: 1	, ,					
EP1804275-001	Anonymous	· · · · · · · · · · · · · · · · · · ·		100 mg/kg	# 64.8	70	130
EP 1604275-001	Anonymous	EK067G: Total Phosphorus as P		100 mg/kg		70	130
ub-Matrix: WATER					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	. ,
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
	d Metals by ICP-MS (QCLot: 1558348)						
EP1804219-002	SW02	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	113	70	130
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	108	70	130
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	101	70	130
		EG020A-F: Copper	7440-50-8	0.2 mg/L	100	70	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	102	70	130
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	99.9	70	130
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	103	70	130
EG020T: Total Met	tals by ICP-MS (QCLot: 1561449)						
EP1804219-002	SW02	EG020A-T: Arsenic	7440-38-2	1 mg/L	104	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	98.1	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	93.7	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	92.8	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	95.3	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.4	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	100	70	130
G035F: Dissolve	d Mercury by FIMS (QCLot: 1558347)						
EP1804219-007	GW01	EG035F: Mercury	7439-97-6	0.01 mg/L	90.3	70	130
G035T: Total Re	coverable Mercury by FIMS (QCLot: 1561456)						
EP1804219-007	GW01	EG035T: Mercury	7439-97-6	0.01 mg/L	86.0	70	130
K055G: Ammoni	a as N by Discrete Analyser (QCLot: 1562613)						
EP1804219-001	SW01		7664-41-7	1 mg/L	106	70	130
		EK055G: Ammonia as N	/004-41-/	i iiig/L	001	10	130
	s N by Discrete Analyser (QCLot: 1534928)						
EP1804203-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	102	70	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser(QCLot: 1562614)					
	SW01	EK059G: Nitrite + Nitrate as N		0.5 mg/L	87.4	70	130

Page	: 10 of 10
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER				М	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCLot: 1559009)	continued					
EP1804219-002	SW02	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	105	70	130
EK067G: Total Pho	sphorus as P by Discrete Analyser (QCLot: 1559008)						
EP1804219-002	SW02	EK067G: Total Phosphorus as P		1 mg/L	99.7	70	130
EK071FG: Dissolv	ed Reactive Phosphorus as P by DA (QCLot: 1544387)						
EP1804219-002	SW02	EK071FG: Dissolved Reactive Phosphorus as P		0.4 mg/L	115	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 1534927)					
EP1804203-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	106	70	130

	QA/QC Compliance Assessment to assist with Quality Review						
/ork Order	: EP1804219	Page	: 1 of 11				
mendment	: 1						
ent	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Perth				
act	: MITCH HEDGES	Telephone	: +61-8-9406 1301				
t	: 17102 Salter Point Lagoon Study	Date Samples Received	: 29-Mar-2018				
	:	Issue Date	: 16-Apr-2018				
ler	: MITCH HEDGES	No. of samples received	: 9				
er number	:	No. of samples analysed	: 9				

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG005-SD: Total Metals in Sediments by ICP-AES	EP1804219005	SED2	Aluminium	7429-90-5	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EG005-SD: Total Metals in Sediments by ICP-AES	EP1804219005	SED2	Iron	7439-89-6	Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EK067G: Total Phosphorus as P by Discrete Analyser	EP1804275001	Anonymous	Total Phosphorus as P		64.8 %	70-130%	Recovery less than lower data quality
							objective

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Matrix: SOII

Method		E	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
SW01,	SW02,				07-Apr-2018	28-Mar-2018	10
SW03,	GW01,						
GW02,	GW03						
EK071FG: Dissolved Reactive Phosphorus as F	P by DA						
Clear Plastic Bottle - Natural (Client Filtered)							
SW01,	SW02,				05-Apr-2018	29-Mar-2018	7
SW03,	GW01,						
GW02,	GW03						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

				E valuation.	Thorang arris	broadin, n	name notanig arrie.
Method	Sample Date	Extraction / Preparation		Analysis			
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analys	is Evaluation

Matrix: SOIL					Evaluation	: × = Holding time	breach ; 🗸 = With	n holding time
Method			Ex	traction / Preparation				
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA003 :pH (field/fox)								
Snap Lock Bag - frozen on receipt at ALS (EA003) SED1, SED3	SED2,	28-Mar-2018	13-Apr-2018	21-Dec-2020	1	13-Apr-2018	12-Jul-2018	~
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) SED1, SED3	SED2,	28-Mar-2018				06-Apr-2018	11-Apr-2018	~
EG005-SD: Total Metals in Sediments by ICP-AES								
Soil Glass Jar - Unpreserved (EG005-SD) SED1, SED3	SED2,	28-Mar-2018	06-Apr-2018	24-Sep-2018	~	09-Apr-2018	24-Sep-2018	~
EG020-SD: Total Metals in Sediments by ICPMS								
Soil Glass Jar - Unpreserved (EG020-SD) SED1, SED3	SED2,	28-Mar-2018	06-Apr-2018	24-Sep-2018	~	09-Apr-2018	24-Sep-2018	~
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T-LL) SED1, SED3	SED2,	28-Mar-2018	06-Apr-2018	25-Apr-2018	~	10-Apr-2018	25-Apr-2018	~
EK055: Ammonia as N								
Soil Glass Jar - Unpreserved (EK055) SED1, SED3	SED2,	28-Mar-2018				04-Apr-2018	24-Sep-2018	~
EK057G: Nitrite as N by Discrete Analyser								
Soil Glass Jar - Unpreserved (EK057G) SED1, SED3	SED2,	28-Mar-2018	09-Apr-2018	24-Sep-2018	~	09-Apr-2018	24-Sep-2018	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete A	Analyser							
Soil Glass Jar - Unpreserved (EK059G) SED1, SED3	SED2,	28-Mar-2018	09-Apr-2018	24-Sep-2018	~	09-Apr-2018	24-Sep-2018	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyse	r							
Soil Glass Jar - Unpreserved (EK061G) SED1, SED3	SED2,	28-Mar-2018	06-Apr-2018	24-Sep-2018	~	10-Apr-2018	24-Sep-2018	~
EK067G: Total Phosphorus as P by Discrete Analyser	r							
Soil Glass Jar - Unpreserved (EK067G) SED1, SED3	SED2,	28-Mar-2018	06-Apr-2018	24-Sep-2018	1	10-Apr-2018	24-Sep-2018	~

Matrix: SOIL					Evaluation	n: × = Holding time	e breach ; ✓ = With	in holding tim
Method			Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP003: Total Organic Carbon (TOC) in Soil								
Soil Glass Jar - Unpreserved (EP003) SED1, SED3	SED2,	28-Mar-2018	09-Apr-2018	25-Apr-2018	~	09-Apr-2018	25-Apr-2018	✓
Matrix: WATER					Evaluation	n: × = Holding time	e breach ; ✓ = With	in holdina tim
Method		Sample Date	E	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator					1			
Clear Plastic Bottle - Natural (EA005-P)								
SW01,	SW02,	28-Mar-2018				07-Apr-2018	28-Mar-2018	×
SW03,	GW01,							
GW02,	GW03							
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidified (EG0								
SW01,	SW02,	28-Mar-2018				12-Apr-2018	24-Sep-2018	✓
SW03,	GW01,							
GW02,	GW03							
EG020T: Total Metals by ICP-MS								
Clear Plastic Bottle - Unfiltered; Lab-acidified (EC				04.0 - 0040			04.0 0040	
SW01,	SW02,	28-Mar-2018	12-Apr-2018	24-Sep-2018	✓	12-Apr-2018	24-Sep-2018	✓
SW03,	GW01,							
GW02,	GW03							
EG035F: Dissolved Mercury by FIMS			1	1	1	1	1	
Clear Plastic Bottle - Filtered; Lab-acidified (EG0	-	28-Mar-2018				12-Apr-2018	25-Apr-2018	
SW01,	SW02,	28-mar-2018				12-Apr-2018	25-Api-2016	✓
SW03,	GW01,							
GW02,	GW03							
EG035T: Total Recoverable Mercury by FIMS		1	1	1	1	1	1	
Clear Plastic Bottle - Unfiltered; Lab-acidified (EC SW01,	50351) SW02,	28-Mar-2018				12-Apr-2018	25-Apr-2018	
	,	20-wai-2010				12-Api-2010	20-Api-2010	✓
SW03,	GW01,							
GW02,	GW03							
EK055G: Ammonia as N by Discrete Analyser			1			1		
Clear Plastic Bottle - Sulfuric Acid (EK055G) SW01.	SW02.	28-Mar-2018				13-Apr-2018	25-Apr-2018	
SW01, SW03,	GW01,	20-Wai -2010				10-Api-2010	20-Api-2010	✓
GW02,	GW03							

Page	: 5 of 11
Work Order	EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER					Evaluatior	n: × = Holding time	e breach ; ✓ = Withi	in holding time
Method		Sample Date	E	xtraction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G)								
SW01,	SW02,	28-Mar-2018				29-Mar-2018	30-Mar-2018	 ✓
SW03,	GW01,							
GW02,	GW03							
EK059G: Nitrite plus Nitrate as N (NOx) by	Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G)								
SW01,	SW02,	28-Mar-2018				13-Apr-2018	25-Apr-2018	✓
SW03,	GW01,							
GW02,	GW03							
EK061G: Total Kjeldahl Nitrogen By Discrete	e Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G)								
SW01,	SW02,	28-Mar-2018	12-Apr-2018	25-Apr-2018	1	13-Apr-2018	25-Apr-2018	 ✓
SW03,	GW01,							
GW02,	GW03							
EK067G: Total Phosphorus as P by Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G)								
SW01,	SW02,	28-Mar-2018	12-Apr-2018	25-Apr-2018	1	13-Apr-2018	25-Apr-2018	 ✓
SW03,	GW01,							
GW02,	GW03							
EK071FG: Dissolved Reactive Phosphorus a	as P by DA							
Clear Plastic Bottle - Natural (Client Filtered)								
SW01,	SW02,	28-Mar-2018				05-Apr-2018	29-Mar-2018	×
SW03,	GW01,							
GW02,	GW03							
EK071G: Reactive Phosphorus as P by disc	rete analyser							
Clear Plastic Bottle - Natural (EK071G)								
SW01,	SW02,	28-Mar-2018				29-Mar-2018	30-Mar-2018	✓
SW03,	GW01,							
GW02,	GW03							

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type	C	ount		Rate (%)		Quality Control Specification				
analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation				
aboratory Duplicates (DUP)										
Buchi Ammonia	EK055	3	21	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Noisture Content	EA055	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Analyser										
Nitrite as N - Soluble by Discrete Analyser	EK057G	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
oH field/fox	EA003	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
FKN as N By Discrete Analyser	EK061G	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Fe and AI in Sediments by ICPAES	EG005-SD	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Fotal Mercury by FIMS (Low Level)	EG035T-LL	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Fotal Metals in Sediments by ICPMS	EG020-SD	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard			
Total Organic Carbon	EP003	1	6	16.67	10.00	~	NEPM 2013 B3 & ALS QC Standard			
Total Phosporus By Discrete Analyser	EK067G	2	18	11.11	10.00	~	NEPM 2013 B3 & ALS QC Standard			
aboratory Control Samples (LCS)										
Buchi Ammonia	EK055	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	3	33.33	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard			
Analyser						-				
Nitrite as N - Soluble by Discrete Analyser	EK057G	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard			
IKN as N By Discrete Analyser	EK061G	2	18	11.11	10.00		NEPM 2013 B3 & ALS QC Standard			
Fotal Mercury by FIMS (Low Level)	EG035T-LL	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard			
Fotal Metals in Sediments by ICPMS	EG020-SD	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard			
Fotal Organic Carbon	EP003	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard			
Total Phosporus By Discrete Analyser	EK067G	2	18	11.11	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard			
Method Blanks (MB)						-				
Buchi Ammonia	EK055	2	21	9.52	5.00	✓	NEPM 2013 B3 & ALS QC Standard			
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	3	33.33	5.00		NEPM 2013 B3 & ALS QC Standard			
Analyser	L10090	·	Ŭ			*				
Nitrite as N - Soluble by Discrete Analyser	EK057G	1	3	33.33	5.00	~	NEPM 2013 B3 & ALS QC Standard			
TKN as N By Discrete Analyser	EK061G	1	18	5.56	5.00		NEPM 2013 B3 & ALS QC Standard			
Fotal Fe and Al in Sediments by ICPAES	EG005-SD	1	3	33.33	5.00		NEPM 2013 B3 & ALS QC Standard			
Fotal Mercury by FIMS (Low Level)	EG035T-LL	1	3	33.33	5.00		NEPM 2013 B3 & ALS QC Standard			
Total Metals in Sediments by ICPMS	EG020-SD	1	3	33.33	5.00		NEPM 2013 B3 & ALS QC Standard			
Fotal Organic Carbon	EP003	1	6	16.67	5.00		NEPM 2013 B3 & ALS QC Standard			
Fotal Phosporus By Discrete Analyser	EF003	1	18	5.56	5.00		NEPM 2013 B3 & ALS QC Standard			
	Encoro					.				
Matrix Spikes (MS) Buchi Ammonia	EK055	2	21	9.52	5.00	~	NEPM 2013 B3 & ALS QC Standard			

Page	: 7 of 11
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: SOIL	Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specificatio												
Quality Control Sample Type		Co	Count		Rate (%)		Quality Control Specification						
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation							
Matrix Spikes (MS) - Continued													
Nitrite and Nitrate as N (NOx)- Soluble by Discrete	EK059G	1	3	33.33	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard						
Analyser													
Nitrite as N - Soluble by Discrete Analyser	EK057G	1	3	33.33	5.00	\checkmark	NEPM 2013 B3 & ALS QC Standard						
TKN as N By Discrete Analyser	EK061G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard						
Total Fe and AI in Sediments by ICPAES	EG005-SD	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard						
Total Mercury by FIMS (Low Level)	EG035T-LL	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard						
Total Metals in Sediments by ICPMS	EG020-SD	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard						
Total Phosporus By Discrete Analyser	EK067G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard						

Cot OC 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	unt Reaular 20 20 20 6 18 20 20 20 20 20 20 20 20 20 20	Actual 10.00 10.00 10.00 16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	Rate (%) Expected 10.00	Evaluation	Quality Control Specification NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 20 6 18 20 20 20 20 20 20 20 20 20	10.00 10.00 16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 6 18 20 20 20 20 20 20 20 20 20 20	10.00 10.00 16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	20 20 6 18 20 20 20 20 20 20 20 20 20 20	10.00 10.00 16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	20 6 18 20 20 20 20 20 20 20 20 20	10.00 16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
1 2 2 2 2 2 2 2 2 2 2 2 2	6 18 20 20 20 20 20 20 20 20 20	16.67 11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 2 2 2 2 2 2 2 2 2 2 2 2	18 20 20 20 20 20 20 20 20	11.11 10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 2 2 2 2 2 2 2 2	20 20 20 20 20 20 20 20	10.00 10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC StandardNEPM 2013 B3 & ALS QC Standard
2 2 2 2 2 2	20 20 20 20 20 20 20	10.00 10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC Standard
2 2 2 2	20 20 20 20	10.00 10.00 10.00 10.00	10.00 10.00 10.00 10.00		NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
2 2 2	20 20 20	10.00 10.00 10.00	10.00 10.00 10.00		NEPM 2013 B3 & ALS QC Standard NEPM 2013 B3 & ALS QC Standard
2 2	20 20	10.00 10.00	10.00 10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
2	20	10.00	10.00	√	
	-			-	NEPM 2013 B3 & ALS OC Standard
2	20	10.00	10.00		
				\checkmark	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
1					
1					
	1	1 20 1 20 1 20 1 20	1 20 5.00 1 20 5.00 1 20 5.00 1 20 5.00	1 20 5.00 5.00 1 20 5.00 5.00 1 20 5.00 5.00 1 20 5.00 5.00	1 20 5.00 5.00 ✓ 1 20 5.00 5.00 ✓ 1 20 5.00 5.00 ✓ 1 20 5.00 5.00 ✓

Page	: 8 of 11
Work Order	: EP1804219 Amendment 1
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification				
Quality Control Sample Type		Co	Count		Rate (%)		Quality Control Specification				
Analytical Methods	Method	QC Regular Actual Expected Evaluation			Expected						
Method Blanks (MB) - Continued											
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Reactive Phosphorus as P by DA	EK071FG	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Matrix Spikes (MS)											
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Mercury by FIMS	EG035F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Dissolved Reactive Phosphorus as P by DA	EK071FG	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Nitrite as N by Discrete Analyser	EK057G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard				
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard				

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH field/fox	EA003	SOIL	In house: Referenced to Ahern et al 1998 - determined on a 1:5 soil/water extract designed to simulate field measured pH and pH after the extract has been oxidised with peroxide.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Fe and Al in Sediments by ICPAES	EG005-SD	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3). LORs per NODG
Total Metals in Sediments by ICPMS	EG020-SD	SOIL	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector. Analyte list and LORs per NODG.
Total Mercury by FIMS (Low Level)	EG035T-LL	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Buchi Ammonia	EK055	SOIL	In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.
Nitrite as N - Soluble by Discrete Analyser	EK057G	SOIL	In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.
Nitrate as N - Soluble by Discrete Analyser	EK058G	SOIL	In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.
Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser	EK059G	SOIL	In house: Thermo Scientific Method D08727 and NEMI (National Environmental Method Index) Method ID: 9171. This method covers the determination of total oxidised nitrogen (NOx-N) and nitrate (NO3-N) by calculation, Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by direct colourimetry by Discrete Analyser.
TKN as N By Discrete Analyser	EK061G	SOIL	In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.
Total Nitrogen as N (TKN + NOx) By Discrete Analyser	EK062G	SOIL	In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrogen, each determined seperately as N.
Total Phosporus By Discrete Analyser	EK067G	SOIL	In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.
Total Organic Carbon	EP003	SOIL	In house C-IR17. Dried and pulverised sample is reacted with acid to remove inorganic Carbonates, then combusted in a LECO furnace in the presence of strong oxidants / catalysts. The evolved (Organic) Carbon (as CO2) is automatically measured by infra-red detector.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered
			prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions
			are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct
			mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes
			a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass
			spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their
			measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)
			Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique.
			A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic
			mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell.
			Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM
			(2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS)
			FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise
			any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic
			mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing
			absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser.
			This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser.
			This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed
			by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate
			calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by
Analyser			Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013)
			Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high
Analyser			temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined
			colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule
Discrete Analyser			B(3)
Total Phosphorus as P By Discrete	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves
Analyser			sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate
			reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and
			its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013)
			Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Dissolved Reactive Phosphorus as P by DA	EK071FG	WATER	In house: Referenced to APHA 4500-P F Water samples are filtered through a 0.45um filter prior to analysis. Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is achieved by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	SOIL	In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.
Drying only	EN020D	SOIL	In house
1:5 solid / water leach for soluble analytes	EN34	SOIL	10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.
Hot Block Digest for metals in soils EN69 sediments and sludges		SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Dry and Pulverise (up to 100g)	GEO30	SOIL	#
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

						CHA	IN OF CUSTODY	,							·····		C		D		
Email re	esults to:	bwoodward@syrinx.net.au [primary contact] mhedges@syrinx.net.au lpantelic@syrinx.net.au lurosevic@syrinx.net.au							Project #: 17102 Project: Salter Point Lagoon Study								Environmental pl 12 Monger St, Perth WA 6000				
Inv	voice to:	info@syrin	x.net.au							Laboratory	V- A1	5					_				
	pled by:	BW and LU								Address		Rigali Way,	Wangara	WA 60			-1		one:	9227 9355	
Results re	equired:	<u>STANDARI</u>	<u>2 TAT</u>							Quote #							-		Fax: age:	9481 6299 1 of 1	
Sample Inform	ation													_				r	age.	1011	
		-	Ţ							Analysis Requ	uest	ed								Comments	
Lab ID		nple ID	Sample Matrix	Sampling Time	Sampling date	pH - EA005	Nutrient Suite including FRP*** Total Nitrogen, TKN, NOB, NO2, NO3, NH3, Total Phosphorus, Reactive Phosphorus NT-8A	Algae – Total Count - MW024TOT				Perth	ronme))))				*** Additional field filtered bottle provided in for the filterable reactive phosphorus analysis.	
		W01 W02	WATER	see bottle	24/04/2018	~	√	~ ~				WV C	rk Ord			A -			_		
- 2		W02	WATER WATER	see bottle see bottle	24/04/2018 24/04/2018								P18	505) (0,	4 ⊦	+				
												Telephor	Ne : + 61-6	112 . 112 . 144 . 3-9406 13	301						
Relinquish Date &		ronwyn Wood							Received by:	SA AUS	ļ				Samples	L	الترام ا				
	cume: 2	4/04/2018 14	/						Date & time:	24.4.	18	1:4	som		Security					yes / no yes / no	
Sign	iature:	7 <u>5.</u> 110	odured						Signature:	SP			8'		Lab date						

SAMPLE RECEIPT NOTIFICATION (SRN)

Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Perth
Contact	: bwoodward	Contact	: Customer Services EP
Address	2 12 MONGER ST PERTH AUSTRALIA 6000	Address	26 Rigali Way Wangara WA Australia 6065
E-mail	: bwoodward@syrinx.net.au	E-mail	: ALSEnviro.Perth@alsglobal.com
Telephone	:	Telephone	: +61-8-9406 1301
acsimile	:	Facsimile	: +61-8-9406 1399
Project	: 17102 Salter Point Lagoon Study	Page	: 1 of 3
Order number	:	Quote number	: EP2017SYRENV0003 (EN/222/17)
C-O-C number	:	QC Level	: NEPM 2013 B3 & ALS QC Standard
Site	:		
Sampler	: bwoodward, L Urosevic		

Date Samples Received : 24-Apr-2018 13:45 Issue Date Client Requested Due : 02-May-2018 Scheduled F Date Date Scheduled F		Issue Date Scheduled Reporting Date	: 24-Apr-2018 : 02-May-2018
Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	24.6 - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 3/3

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Algae analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911.
- pH analysis should be conducted within 6 hours of sampling.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: WATER

tasks, that are incl If no sampling default 00:00 on	ation of moisture uded in the package. time is provided, the date of samplin sampling date wi	content and preparation the sampling time will g. If no sampling date II be assumed by the	EA005P	MW024_TOT e Count	ER - NT-08A Nitrogen + NO2 + NO3 + NH3 + Total P +
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - pH (PCT)	WATER - M Total Algae	WATER - Total Nitr
EP1805164-001	24-Apr-2018 00:00	SW01	✓	✓	✓
EP1805164-002	24-Apr-2018 00:00	SW02	✓	✓	✓
EP1805164-003	24-Apr-2018 00:00	SW03	✓	1	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

ALS

Requested Deliverables

bwoodward

bwoodward		
 *AU Certificate of Analysis - NATA (COA) 	Email	bwoodward@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bwoodward@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	bwoodward@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	bwoodward@syrinx.net.au
- Attachment - Report (SUBCO)	Email	bwoodward@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	bwoodward@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	bwoodward@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	bwoodward@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	bwoodward@syrinx.net.au
INVOICES INFO		
- A4 - AU Tax Invoice (INV)	Email	info@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	info@syrinx.net.au
L Urosevic		
 *AU Certificate of Analysis - NATA (COA) 	Email	lurosevic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lurosevic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lurosevic@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lurosevic@syrinx.net.au
- Attachment - Report (SUBCO)	Email	lurosevic@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	lurosevic@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	lurosevic@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	lurosevic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lurosevic@syrinx.net.au
LJILJANA PANTELIC		
 *AU Certificate of Analysis - NATA (COA) 	Email	lpantelic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lpantelic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lpantelic@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	lpantelic@syrinx.net.au
 Attachment - Report (SUBCO) 	Email	lpantelic@syrinx.net.au
 Chain of Custody (CoC) (COC) 	Email	lpantelic@syrinx.net.au
 EDI Format - ENMRG (ENMRG) 	Email	lpantelic@syrinx.net.au
 EDI Format - ESDAT (ESDAT) 	Email	lpantelic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lpantelic@syrinx.net.au
M Hedges		
 *AU Certificate of Analysis - NATA (COA) 	Email	mhedges@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mhedges@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mhedges@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	mhedges@syrinx.net.au
 Attachment - Report (SUBCO) 	Email	mhedges@syrinx.net.au
 Chain of Custody (CoC) (COC) 	Email	mhedges@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	mhedges@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	mhedges@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	mhedges@syrinx.net.au

CERTIFICATE OF ANALYSIS

Work Order	: EP1805164	Page	: 1 of 4	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	Environmental Division Perth	1
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST PERTH AUSTRALIA 6000	Address	: 26 Rigali Way Wangara WA A	Australia 6065
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 24-Apr-2018 13:45	SWIIIII.
Order number	:	Date Analysis Commenced	24-Apr-2018	
C-O-C number	:	Issue Date	02-May-2018 17:13	NATA
Sampler	: bwoodward, L Urosevic		-	HAC-MRA NATA
Site				
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Jeremy Truong	Laboratory Manager	Perth Inorganics, Wangara, WA
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Algae conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- Under microscopic observation, debris present in sample #01, #02 and #03

Analytical Results

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	
	C	lient samplii	ng date / time	24-Apr-2018 00:00	24-Apr-2018 00:00	24-Apr-2018 00:00	
Compound	CAS Number	LOR	Unit	EP1805164-001	EP1805164-002	EP1805164-003	
				Result	Result	Result	
A005P: pH by PC Titrator							
pH Value		0.01	pH Unit	7.85	7.83	7.82	
EK055G: Ammonia as N by Discret	e Analyser						
Ammonia as N	7664-41-7	0.01	mg/L	0.08	0.06	0.06	
K057G: Nitrite as N by Discrete A	nalvser						
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	
K058G: Nitrate as N by Discrete	Analyser						
Nitrate as N	14797-55-8	0.01	mg/L	0.04	0.03	0.03	
K059G: Nitrite plus Nitrate as N (
Nitrite + Nitrate as N			mg/L	0.04	0.03	0.03	
K061G: Total Kjeldahl Nitrogen B			-				
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7	0.7	0.7	
K062G: Total Nitrogen as N (TKN							
Total Nitrogen as N	+ NOX) by Discrete Al	0.1	mg/L	0.7	0.7	0.7	
K067G: Total Phosphorus as P by		0.1	<u>9</u> / _	•	•		
Total Phosphorus as P	Discrete Analyser	0.01	mg/L	0.08	0.09	0.09	
-			ing/E	0.00	0.00	0.05	
EK071G: Reactive Phosphorus as Reactive Phosphorus as P	P by discrete analysel 14265-44-2		mg/L	0.02	0.03	0.02	
•		0.01	mg/E	0.02	0.00	0.02	
W025: Bacillariophytes (Diatoms		5	cells/ml	914	963	1500	
Chaetoceros spp. Cyclotella spp.		5	cells/ml	25	25	25	
Skeletonema spp.		5	cells/ml	7750	4500	6000	
Thalassiosira spp.		5	cells/ml		50	225	
		5				220	
/W025: Bacillariophytes (Diatoms Nitzschia spp.) - Pennales	5	cells/ml			25	
						23	
/W025: Bacillariophytes (Diatoms Total Bacillariophytes			cells/ml	8690	5540	7780	
		J		0030	0040	1100	
/W025: Chlorophytes (Green Alga		F	colle/ml	25			
Chlamydomonas spp.		5 5	cells/ml	25			
Kirchneriella spp.		5	cells/ml cells/ml	125	25	 25	
Pyramimonas spp.				125		25	
/W025: Chlorophytes (Green Alga	e) - TOTAL CHLOROP		e elle ford	450	05	05	
Total Chlorophytes		5	cells/ml	150	25	25	

Page	: 4 of 4
Work Order	: EP1805164
Client	: SYRINX ENVIRONMENTAL PL
Project	17102 Salter Point Lagoon Study

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	SW01	SW02	SW03	
	Cli	ient sampli	ng date / time	24-Apr-2018 00:00	24-Apr-2018 00:00	24-Apr-2018 00:00	
Compound	CAS Number	LOR	Unit	EP1805164-001	EP1805164-002	EP1805164-003	
				Result	Result	Result	
MW025: Cyanophytes (Blue Green Alga	e) - TOTAL CYAN	OPHYTE	S - Continued				
Total Cyanophytes		5	cells/ml	<5	<5	<5	
MW025: Cyanophytes (Blue Green Alga	e) - TOTAL POTE	NTIALLY	TOXIC CYAN	OPHYTES			
Total Potentially Toxic Cyanophytes		5	cells/ml	<5	<5	<5	
MW025: Flagellates - Cryptophytes							
Chroomonas spp.		5	cells/ml	125			
MW025: Flagellates - Euglenophytes							
Euglena spp.		5	cells/ml		25		
Eutreptiella spp.		5	cells/ml		125	100	
MW025: Flagellates - Pyrrophytes							
Gymnodinium spp.		5	cells/ml	25	75	5	
Peridinium spp.		5	cells/ml	25		100	
Protoperidinium spp.		5	cells/ml			50	
MW025: Flagellates - TOTAL FLAGELLA	ATES						
Total Flagellates		5	cells/ml	175	225	255	
MW025: TOTAL ALGAE							
Total Algae Count		5	cells/ml	9010	5790	8060	
MW025: TOTAL POTENTIALLY TOXIC A	LGAE						
Total Potentially Toxic Algae		5	cells/ml	<5	<5	<5	

QUALITY CONTROL REPORT

Work Order	: EP1805164	Page	: 1 of 4	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division	Perth
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST PERTH AUSTRALIA 6000	Address	: 26 Rigali Way Wangara	WA Australia 6065
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 24-Apr-2018	AMILIU.
Order number	:	Date Analysis Commenced	24-Apr-2018	
C-O-C number	:	Issue Date	02-May-2018	
Sampler	: bwoodward, L Urosevic			HAC-MRA NATA
Site	:			
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 3			Accredited for compliance with
No. of samples analysed	: 3			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Jeremy Truong	Laboratory Manager	Perth Inorganics, Wangara, WA
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	Matrix: WATER				Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA005P: pH by PC T	itrator (QC Lot: 1605706)								
EP1805142-003	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.31	6.33	0.316	0% - 20%
EP1805337-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	7.13	7.17	0.559	0% - 20%
EK055G: Ammonia a	s N by Discrete Analyser	(QC Lot: 1593122)							
EP1805138-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	15.3	15.2	0.626	0% - 20%
EP1805164-003	SW03	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.06	0.06	0.00	No Limit
EK057G: Nitrite as N	l by Discrete Analyser (Q	C Lot: 1592719)							
EP1805138-007	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	0.57	0.58	1.81	0% - 20%
EP1805137-018	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plus	Nitrate as N (NOx) by Di	screte Analyser (QC Lot: 1593121)							
EP1805138-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	14.6	14.4	1.44	0% - 20%
EP1805164-003	SW03	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.03	0.02	0.00	No Limit
EK061G: Total Kjelda	ahl Nitrogen By Discrete	Analyser (QC Lot: 1605805)							
EP1805139-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	4.4	4.3	2.74	0% - 20%
EP1805164-003	SW03	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.7	0.8	0.00	No Limit
EK067G: Total Phos	ohorus as P by Discrete A	nalyser (QC Lot: 1605806)							
EP1805139-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.07	0.07	0.00	No Limit
EP1805164-003	SW03	EK067G: Total Phosphorus as P		0.01	mg/L	0.09	0.09	0.00	No Limit
EK071G: Reactive Pl	nosphorus as P by discre	te analyser (QC Lot: 1592721)							
EP1805138-007	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1805137-018	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EA005P: pH by PC Titrator (QCLot: 1605706)										
EA005-P: pH Value			pH Unit		4 pH Unit	100	99	102		
					7 pH Unit	99.7	99	102		
EK055G: Ammonia as N by Discrete Analyser (QC	CLot: 1593122)									
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	107	87	115		
EK057G: Nitrite as N by Discrete Analyser (QCLo	t: 1592719)									
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	102	86	112		
EK059G: Nitrite plus Nitrate as N (NOx) by Discre	ete Analyser (QCLot: 1593	3121)								
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	105	92	112		
EK061G: Total Kjeldahl Nitrogen By Discrete Anal	yser (QCLot: 1605805)									
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	86.5	82	110		
EK067G: Total Phosphorus as P by Discrete Analy	/ser (QCLot: 1605806)									
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	88.8	70	130		
EK071G: Reactive Phosphorus as P by discrete ar	nalyser (QCLot: 1592721)									
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	105	87	115		

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EK055G: Ammonia	as N by Discrete Analyser (QCLot: 1593122)							
EP1805138-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	126	70	130	
EK057G: Nitrite as	N by Discrete Analyser (QCLot: 1592719)							
EP1805126-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	104	70	130	
EK059G: Nitrite pl	us Nitrate as N (NOx) by Discrete Analyser (QCLot: 159	93121)						
EP1805138-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	93.4	70	130	
EK061G: Total Kje	dahl Nitrogen By Discrete Analyser (QCLot: 1605805)							
EP1805139-002	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		5 mg/L	85.8	70	130	
EK067G: Total Pho	osphorus as P by Discrete Analyser (QCLot: 1605806)							
EP1805139-002	Anonymous	EK067G: Total Phosphorus as P		1 mg/L	98.4	70	130	

Page	: 4 of 4
Work Order	: EP1805164
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER	Jb-Matrix: WATER				Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery Li	imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK071G: Reactive	Phosphorus as P by discrete analyser(QCLot: 159272	1)								
EP1805127-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	109	70	130			

	QA/QC Compliance A	Assessment to assist with	n Quality Review	
Work Order	: EP1805164	Page	: 1 of 7	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Perth	
Contact	: bwoodward	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 24-Apr-2018	
Site	:	Issue Date	: 02-May-2018	
Sampler	: bwoodward, L Urosevic	No. of samples received	: 3	
Order number	:	No. of samples analysed	: 3	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Outliers : Analysis Holding Time Compliance

Matrix: WATER							
Method	Method		xtraction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
SW01,	SW02,				30-Apr-2018	24-Apr-2018	6
SW03							

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER					Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation	aration Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P) SW01, SW03	SW02,	24-Apr-2018				30-Apr-2018	24-Apr-2018	×
EK055G: Ammonia as N by Discrete Analyser	r							
Clear Plastic Bottle - Sulfuric Acid (EK055G) SW01, SW03	SW02,	24-Apr-2018				24-Apr-2018	22-May-2018	~
EK057G: Nitrite as N by Discrete Analyser								
Clear Plastic Bottle - Natural (EK057G) SW01, SW03	SW02,	24-Apr-2018				24-Apr-2018	26-Apr-2018	~
EK059G: Nitrite plus Nitrate as N (NOx) by D	iscrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) SW01, SW03	SW02,	24-Apr-2018				24-Apr-2018	22-May-2018	~
EK061G: Total Kjeldahl Nitrogen By Discrete	Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) SW01, SW03	SW02,	24-Apr-2018	02-May-2018	22-May-2018	4	02-May-2018	22-May-2018	✓

Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Samp	ple Date	Ext	raction / Preparation		Analysis		
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK067G: Total Phosphorus as P by Discrete Analy	/ser								
Clear Plastic Bottle - Sulfuric Acid (EK067G) SW01, SW03	SW02,	24-Ar	pr-2018	02-May-2018	22-May-2018	~	02-May-2018	22-May-2018	~
EK071G: Reactive Phosphorus as P by discrete ar	nalyser								
Clear Plastic Bottle - Natural (EK071G) SW01, SW03	SW02,	24-Ar	pr-2018				24-Apr-2018	26-Apr-2018	~
MW025: Bacillariophytes (Diatoms) - Centrales									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ar	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Bacillariophytes (Diatoms) - Pennales									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ar	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Bacillariophytes (Diatoms) - TOTAL BACI	LLARIOPHYTES								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Aş	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Chlorophytes (Green Algae)									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ar	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Chlorophytes (Green Algae) - TOTAL CHL	OROPHYTES								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ap	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Cyanophytes (Blue Green Algae)									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ap	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Cyanophytes (Blue Green Algae) - Other 0	Cyanophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ag	pr-2018				01-May-2018	21-Oct-2018	~
MW025: Cyanophytes (Blue Green Algae) - TOTAL	CYANOPHYTES								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Ap	pr-2018				01-May-2018	21-Oct-2018	~

Page	: 4 of 7
Work Order	: EP1805164
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW025: Cyanophytes (Blue Green Algae) - TOTAL	POTENTIALLY TOXIC CYANOPHYTES							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Cyanophytes (Blue Green Algae) - Unident	ified Cyanophytes							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Dictyochophyceae								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Dictyochophyceae- TOTAL DICTYOCHOPH	IYCEAE							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Flagellates - Cryptophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	✓
MW025: Flagellates - Euglenophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Flagellates - Other Flagellates								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Flagellates - Pyrrophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Flagellates - TOTAL FLAGELLATES								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Flagellates - Unidentified Flagellates								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	24-Apr-2018				01-May-2018	21-Oct-2018	~
00							1	

Page	5 of 7
Work Order	: EP1805164
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER						Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method			Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW025: Golden and Yellow-Green Algae									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	:	24-Apr-2018				01-May-2018	21-Oct-2018	1
MW025: Golden and Yellow-Green Algae - TOTAL	GOLDEN AND YELLOW-GREEN A	LGAE							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,		24-Apr-2018				01-May-2018	21-Oct-2018	1
MW025: Haptophytes									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	:	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Pyrrophytes									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,		24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Raphidophytes									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	:	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: Raphidophytes - TOTAL RAPHIDOPHYTE	s								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	:	24-Apr-2018				01-May-2018	21-Oct-2018	~
MW025: TOTAL ALGAE									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,		24-Apr-2018				01-May-2018	21-Oct-2018	✓
MW025: TOTAL POTENTIALLY TOXIC ALGAE									
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,		24-Apr-2018				01-May-2018	21-Oct-2018	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification	
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Ammonia as N by Discrete analyser	EK055G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard	
pH by PC Titrator	EA005-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard	
pH by PC Titrator	EA005-P	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	14	7.14	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	14	7.14	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Algae Count	MW025 TOT	WATER	In house: Referenced to Hotzel and Groome, 1999 and APHA 10200
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)

						СНА	IN OF CUSTOD	1						SYRIN	X
Email re	esults to:	mhedges@ Ipantelic@s	d@syrinx.net.au syrinx.net.au syrinx.net.au syrinx.net.au	u (primary co	ontact]				Project #: 17102 Project: Salter Point Lagoon Study			environmental pl 12 Monger St, Perth WA 6000			
Inv	voice to:	info@syrin:	.net.au							Laboratory	r: ALS			 Phone: 9227 93	55
	pled by:	BW and LU										y, Wangara WA	6065	Fax: 948162	
Results r	equired:	STANDARD	TAT							Quote ‡	k			Page: 1 of 1	
Sample Inform	nation								× ·2	Analysis Rec	uested				Comments
Lab ID	Sa	mple (D	Sample Matrix	Sampling Time	Sampling date	pH - EA005	Nutrient Suite including FRP*** Total Nitrogen, TKN, NO,, NO2, NO3, NH3, Total Phosphorus, Reactive Phosphorus NT-8A	Salinity		Total metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)	Dissolved metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)			bottle p marked for the f	itional field filtered rovided in a up metals bottle ilterable reactive orus analysis.
		SD1	WATER	9:30am	25/05/2018	×								Perth Work Order Referen EP18065	ce
														Telephone : + 61-8-9406 1301	
Relinquis Date	shed by: & time:	Bronwyn Woo 25/05/2018 1	2:00	L	I				Received by: Date & time:	5P 3.50	PM 2	5.5.18	Samples r	eceived chilled zal intact	yes / no yes / no
Sig	gnature:	75.M00	durent						Signature:		· · ·		Lab date 8	& signature:	

.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EP1806507		
Client Contact Address	: SYRINX ENVIRONMENTAL PL : bwoodward : 12 MONGER ST PERTH AUSTRALIA 6000	Laboratory Contact Address	 Environmental Division Perth Customer Services EP 26 Rigali Way Wangara WA Australia 6065
E-mail Telephone Facsimile	: bwoodward@syrinx.net.au : :	E-mail Telephone Facsimile	: ALSEnviro.Perth@alsglobal.com : +61-8-9406 1301 : +61-8-9406 1399
Project Order number C-O-C number Site Sampler	: 17102 Salter Point Lagoon Study : : : : bwoodward, L Urosevic	Page Quote number QC Level	: 1 of 3 : EP2017SYRENV0003 (EN/222/17) : NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Rece	eived : 25-May-2018 13:05	Issue Date	: 25-May-2018

Date Samples Received Client Requested Due Date	: 25-May-2018 13:05 : 05-Jun-2018	Issue Date Scheduled Reporting Date	: 25-May-2018 : 05-Jun-2018
Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Intact.
No. of coolers/boxes	: 1	Temperature	: 13.0 - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 1/1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com)
- Analytical work for this work order will be conducted at ALS Environmental Perth.
- Please direct any turnaround / technical queries to the laboratory contact designated above.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- pH analysis should be conducted within 6 hours of sampling.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Method Client sample ID	Sample Container Received	Preferred Sample Container for Analysis
Nitrite as N by Discrete Analys	er : EK057G	
SD1	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural
Reactive Phosphorus as P-By	Discrete Analyser : EK071G	
SD1	- Clear Plastic Bottle - Natural (Client Filtered)	- Clear Plastic Bottle - Natural

Summary of Sample(s) and Requested Analysis

process necessa tasks. Packages as the determina tasks, that are inclu If no sampling default 00:00 on t is provided, the	ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of samplin	be part of a laboratory on of client requested ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time	(- EA005P	(- EA020-EC-P	ER - NT-08A Nitrogen + NO2 + NO3 + NH3 + Total P +	t - W-30 IIs	- W-30T Is (Total)
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - PH (PCT)	WATER Salinity	WATER Total Nit	WATER - 11 Metals	WATER - 11 Metals
EP1806507-001	25-May-2018 09:30	SD1	1	✓	1	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

ALS

Requested Deliverables

bwoodward

bwoodwald		
 *AU Certificate of Analysis - NATA (COA) 	Email	bwoodward@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bwoodward@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	bwoodward@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bwoodward@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	bwoodward@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	bwoodward@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	bwoodward@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	bwoodward@syrinx.net.au
INVOICES INFO		
- A4 - AU Tax Invoice (INV)	Email	info@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	info@syrinx.net.au
L Urosevic		
 *AU Certificate of Analysis - NATA (COA) 	Email	lurosevic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lurosevic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lurosevic@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lurosevic@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	lurosevic@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	lurosevic@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	lurosevic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lurosevic@syrinx.net.au
LJILJANA PANTELIC		
 *AU Certificate of Analysis - NATA (COA) 	Email	lpantelic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lpantelic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lpantelic@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lpantelic@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	lpantelic@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	lpantelic@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	lpantelic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lpantelic@syrinx.net.au
M Hedges		
 *AU Certificate of Analysis - NATA (COA) 	Email	mhedges@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mhedges@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mhedges@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	mhedges@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	mhedges@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	mhedges@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	mhedges@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	mhedges@syrinx.net.au

CERTIFICATE OF ANALYSIS

Work Order	: EP1806507	Page	: 1 of 4	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Per	rth
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST	Address	: 26 Rigali Way Wangara W	A Australia 6065
	PERTH AUSTRALIA 6000			
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 25-May-2018 13:05	$\Delta W^{[1]}$
Order number	:	Date Analysis Commenced	: 25-May-2018	
C-O-C number	:	Issue Date	: 05-Jun-2018 17:11	
Sampler	: bwoodward, L Urosevic			Hac-MRA NATA
Site	:			
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke Efua Wilson	Inorganics Supervisor Metals Chemist	Perth Inorganics, Wangara, WA Perth Inorganics, Wangara, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EG035: Poor matrix spike recovery due to possible matrix effects.

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		SD1	 	 	
	Client sampling date / time		25-May-2018 09:30	 	 	
Compound	CAS Number	LOR	Unit	EP1806507-001	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.02	 	
EA010P: Conductivity by PC Titrator						
Electrical Conductivity @ 25°C		1	µS/cm	15700	 	
EA020EC: Salinity						
Salinity		0.01	g/kg	10.3	 	
EG020F: Dissolved Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	<0.01	 	
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.003	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.079	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	0.16	 	
Arsenic	7440-38-2	0.001	mg/L	0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0004	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	0.005	 	
Nickel	7440-02-0	0.001	mg/L	0.001	 	
Lead	7439-92-1	0.001	mg/L	0.003	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.092	 	
Iron	7439-89-6	0.05	mg/L	0.16	 	
EG035F: Dissolved Mercury by FIMS						
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury by	FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK055G: Ammonia as N by Discrete Ana	alyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.32	 	
EK057G: Nitrite as N by Discrete Analys						

Page	: 4 of 4
Work Order	: EP1806507
Client	: SYRINX ENVIRONMENTAL PL
Project	17102 Salter Point Lagoon Study

Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		SD1						
	Client sampling date / time			25-May-2018 09:30					
Compound	CAS Number	LOR	Unit	EP1806507-001					
				Result					
EK057G: Nitrite as N by Discrete Analyser - Continued									
Nitrite as N	14797-65-0	0.01	mg/L	<0.01					
EK058G: Nitrate as N by Discrete Analyser									
Nitrate as N	14797-55-8	0.01	mg/L	0.10					
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser									
Nitrite + Nitrate as N		0.01	mg/L	0.10					
EK061G: Total Kjeldahl Nitrogen By	EK061G: Total Kjeldahl Nitrogen By Discrete Analyser								
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.9					
EK062G: Total Nitrogen as N (TKN + NOx) by Discrete Analyser									
^ Total Nitrogen as N		0.1	mg/L	1.0					
EK067G: Total Phosphorus as P by Discrete Analyser									
Total Phosphorus as P		0.01	mg/L	0.15					
EK071G: Reactive Phosphorus as P by discrete analyser									
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.05					

QUALITY CONTROL REPORT

Work Order	: EP1806507	Page	: 1 of 6	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division	Perth
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST PERTH AUSTRALIA 6000	Address	: 26 Rigali Way Wangara	WA Australia 6065
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 25-May-2018	
Order number	:	Date Analysis Commenced	: 25-May-2018	
C-O-C number	:	Issue Date	05-Jun-2018	
Sampler	: bwoodward, L Urosevic			HAC-MRA NATA
Site	:			
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA005P: pH by PC T	itrator (QC Lot: 16910	81)							
EP1806515-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.43	6.43	0.00	0% - 20%
EA010P: Conductivi	ty by PC Titrator (QC L	_ot: 1691079)							
EP1806473-001	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1340	1340	0.600	0% - 20%
EP1806482-015	Anonymous	EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	1570	1540	1.85	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 1690476)							
EP1806410-001	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EP1806515-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	0.0080	0.0088	9.89	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	6.21	6.33	1.91	0% - 20%
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.020	<0.020	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	22.6	23.1	1.98	0% - 20%
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.020	<0.020	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	424	428	1.10	0% - 20%
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	1.37	1.36	0.791	0% - 50%
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	0.41	0.37	10.5	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.20	0.22	12.1	No Limit

Page	: 3 of 6
Work Order	: EP1806507
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	C Lot: 1690476) - continued							
EP1806515-002	Anonymous	EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.20	<0.20	0.00	No Limit
EG020T: Total Meta	Is by ICP-MS (QC Lot	: 1686815)							
EP1806497-002	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.001	0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.013	0.013	0.00	0% - 50%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.003	0.003	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.033	0.034	0.00	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.22	0.21	8.52	0% - 20%
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.26	0.23	9.69	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	ELot: 1690477)							
EP1806497-001	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1806524-006	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Rec	overable Mercury by F	IMS (QC Lot: 1686809)							
EP1806481-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1806482-007	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Anal	yser (QC Lot: 1678052)							
EP1806514-001	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	46.0	50.8	9.79	0% - 20%
EP1806517-009	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.25	0.25	0.00	0% - 20%
EK057G: Nitrite as	N by Discrete Analyse	er (QC Lot: 1677995)							
EP1806517-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1806517-011	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plu	IS Nitrate as N (NOx)	by Discrete Analyser (QC Lot: 1678051)							
EP1806514-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	48.2	49.7	3.08	0% - 20%
EP1806517-009	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.01	0.01	0.00	No Limit
EK061G: Total Kjelo	dahl Nitrogen By Discr	ete Analyser (QC Lot: 1691929)							
EP1806501-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	5.5	6.1	10.6	No Limit
EP1806516-005	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.6	0.6	0.00	No Limit
EK067G: Total Phos	sphorus as P by <u>Discr</u>	ete Analyser (QC Lot: 1691930)							
EP1806501-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.46	0.49	5.71	No Limit
EP1806516-005	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.11	0.10	12.8	0% - 50%
EK071G: Reactive R	Phosphorus as P by di	screte analyser (QC Lot: 1677996)							
EP1806517-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.01	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
A005P: pH by PC Titrator (QCLot: 1691081)									
EA005-P: pH Value			pH Unit		4 pH Unit	100	99	102	
					7 pH Unit	99.7	99	102	
EA010P: Conductivity by PC Titrator (QCLot: 169 [.]	1079)								
EA010-P: Electrical Conductivity @ 25°C		1	µS/cm	<1	24800 µS/cm	100	95	105	
G020F: Dissolved Metals by ICP-MS (QCLot: 169	0476)								
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.5	84	120	
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.8	84	120	
G020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.4	86	120	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	96.0	85	120	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.4	84	120	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	92.4	85	120	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	94.7	84	120	
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	93.7	88	120	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	109	89	120	
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	92.6	84	120	
EG020T: Total Metals by ICP-MS(QCLot: 1686815)								
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	94.6	84	120	
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	94.8	85	120	
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	94.1	84	120	
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.0	85	120	
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	89.5	83	120	
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	91.0	86	120	
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	89.1	83	120	
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	97.6	83	120	
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	92.6	84	120	
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	92.8	77	120	
EG035F: Dissolved Mercury by FIMS (QCLot: 169	0477)								
G035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	104	92	116	
EG035T: Total Recoverable Mercury by FIMS (QC	Lot: 1686809)								
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	101	87	115	
EK055G: Ammonia as N by Discrete Analyser(QC	L ot: 1678052)								
-Record. Aminomia as it by Discrete Analyser (QC	7664-41-7	0.01	mg/L	<0.01	1 mg/L	111	87	115	

Sub-Matrix: WATER		Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK057G: Nitrite as N by Discrete Analyser (Q0	CLot: 1677995) - continued							
EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	103	86	112
EK059G: Nitrite plus Nitrate as N (NOx) by Dis	crete Analyser (QCLot: 167	8051)						
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	98.0	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete A	nalyser (QCLot: 1691929)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	89.0	82	110
EK067G: Total Phosphorus as P by Discrete A	nalyser (QCLot: 1691930)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	99.4	70	130
EK071G: Reactive Phosphorus as P by discrete	e analyser (QCLot: 1677996))						
EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	0.5 mg/L	110	87	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG020F: Dissolve	d Metals by ICP-MS (QCLot: 1690476)							
EP1806410-003	Anonymous	EG020A-F: Arsenic	7440-38-2	0.2 mg/L	104	70	130	
	EG020A-F: Cadmium	7440-43-9	0.05 mg/L	104	70	130		
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	103	70	130	
		EG020A-F: Copper	7440-50-8	0.2 mg/L	104	70	130	
		EG020A-F: Lead	7439-92-1	0.2 mg/L	98.7	70	130	
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	104	70	130	
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	105	70	130	
EG020T: Total Me	tals by ICP-MS (QCLot: 1686815)							
EP1806497-003	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	102	70	130	
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	105	70	130	
		EG020A-T: Chromium	7440-47-3	1 mg/L	104	70	130	
		EG020A-T: Copper	7440-50-8	1 mg/L	99.3	70	130	
		EG020A-T: Lead	7439-92-1	1 mg/L	102	70	130	
		EG020A-T: Lead EG020A-T: Nickel	7439-92-1 7440-02-0	1 mg/L 1 mg/L	102 98.4	70 70	130 130	
					-	-		
EG035F: Dissolve	d Mercury by FIMS (QCLot: 1690477)	EG020A-T: Nickel	7440-02-0	1 mg/L	98.4	70	130	
EG035F: Dissolve EP1806497-002	d Mercury by FIMS (QCLot: 1690477) Anonymous	EG020A-T: Nickel	7440-02-0	1 mg/L	98.4	70	130	
EP1806497-002		EG020A-T: Nickel EG020A-T: Zinc EG035F: Mercury	7440-02-0 7440-66-6	1 mg/L 1 mg/L	98.4 104	70 70	130 130	

Page Work Order	6 of 6 EP1806507
Client	SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER	Matrix: WATER					Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)			
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High			
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 1677995)									
EP1806507-001	SD1	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	106	70	130			
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 16	78051)								
EP1806507-001	SD1	EK059G: Nitrite + Nitrate as N		0.5 mg/L	102	70	130			
EK061G: Total Kje	Idahl Nitrogen By Discrete Analyser (QCLot: 1691929)									
EP1806501-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		50 mg/L	91.7	70	130			
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 1691930)									
EP1806501-001	Anonymous	EK067G: Total Phosphorus as P		10 mg/L	103	70	130			
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 1677996	5)								
EP1806507-001	SD1	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	110	70	130			

Client: SYRINX ENVIRONMENTAL PLLaboratory: Environmental Division PeContact: bwoodwardTelephone: +61-8-9406 1301Project: 17102 Salter Point Lagoon StudyDate Samples Received: 25-May-2018Site:Issue Date: 05-Jun-2018		QA/QC Compliance A	Assessment to assist with	n Quality Review
Contact: bwoodwardTelephone: +61-8-9406 1301Project: 17102 Salter Point Lagoon StudyDate Samples Received: 25-May-2018Site:Issue Date: 05-Jun-2018	Work Order	: EP1806507	Page	: 1 of 7
Project : 17102 Salter Point Lagoon Study Date Samples Received : 25-May-2018 Site : Issue Date : 05-Jun-2018	Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Perth
Site : Issue Date : 05-Jun-2018	Contact	: bwoodward	Telephone	: +61-8-9406 1301
	Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 25-May-2018
Sampler : bwoodward, L Urosevic No. of samples received : 1	Site	:	Issue Date	: 05-Jun-2018
	Sampler	: bwoodward, L Urosevic	No. of samples received	: 1
Order number : No. of samples analysed : 1	Order number	:	No. of samples analysed	: 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Method	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)	Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
			overdue			overdue
EA005P: pH by PC Titrator						
Clear Plastic Bottle - Natural						
SD1				31-May-2018	25-May-2018	6

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	Co	unt	Rate	e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Matrix Spikes (MS)					
Total Mercury by FIMS	0	20	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural (EA005-P) SD1	25-May-2018				31-May-2018	25-May-2018	x
EA010P: Conductivity by PC Titrator							
Clear Plastic Bottle - Natural (EA010-P) SD1	25-May-2018				31-May-2018	22-Jun-2018	~
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F) SD1	25-May-2018				01-Jun-2018	21-Nov-2018	✓
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG020A-T) SD1	25-May-2018	31-May-2018	21-Nov-2018	1	31-May-2018	21-Nov-2018	√
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG035F) SD1	25-May-2018				05-Jun-2018	22-Jun-2018	1

Page	: 3 of 7
Work Order	: EP1806507
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date Extraction / Preparation						
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Unfiltered; Lab-acidified (EG035T) SD1	25-May-2018				01-Jun-2018	22-Jun-2018	~
EK055G: Ammonia as N by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK055G) SD1	25-May-2018				25-May-2018	22-Jun-2018	~
EK057G: Nitrite as N by Discrete Analyser							
Clear Plastic Bottle - Natural (Client Filtered) (EK057G) SD1	25-May-2018				25-May-2018	27-May-2018	~
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK059G) SD1	25-May-2018				25-May-2018	22-Jun-2018	~
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK061G) SD1	25-May-2018	01-Jun-2018	22-Jun-2018	1	01-Jun-2018	22-Jun-2018	~
EK067G: Total Phosphorus as P by Discrete Analyser							
Clear Plastic Bottle - Sulfuric Acid (EK067G) SD1	25-May-2018	01-Jun-2018	22-Jun-2018	1	01-Jun-2018	22-Jun-2018	~
EK071G: Reactive Phosphorus as P by discrete analyser							
Clear Plastic Bottle - Natural (Client Filtered) (EK071G) SD1	25-May-2018				25-May-2018	26-May-2018	1

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Ammonia as N by Discrete analyser	EK055G	2	16	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS QC Standard
Vitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	19	10.53	10.00	✓	NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
H by PC Titrator	EA005-P	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
Immonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard
conductivity by PC Titrator	EA010-P	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
H by PC Titrator	EA005-P	2	9	22.22	10.00	~	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00	√	NEPM 2013 B3 & ALS QC Standard
otal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
otal Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)						_	
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Conductivity by PC Titrator	EA010-P	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00		NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
litrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00		NEPM 2013 B3 & ALS QC Standard
litrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00		NEPM 2013 B3 & ALS QC Standard
Fotal Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Fotal Mercury by FIMS	EG035T	1	20	5.00	5.00		NEPM 2013 B3 & ALS QC Standard
Fotal Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00		NEPM 2013 B3 & ALS QC Standard

Page	5 of 7
Work Order	: EP1806507
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency r	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Actual Expected Evaluation		
Method Blanks (MB) - Continued							
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Ammonia as N by Discrete analyser	EK055G	1	16	6.25	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	0	20	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	7	14.29	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Conductivity by PC Titrator	EA010-P	WATER	In house: Referenced to APHA 2510 B. This procedure determines conductivity by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Salinity	EA020-EC-P	WATER	In house: Referenced to APHA 2520B. Calculation from Electrical conductivity. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)

Page	: 7 of 7
Work Order	: EP1806507
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Analytical Methods	Method	Matrix	Method Descriptions
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

						CHA	IN OF CUSTODY								S	YR	IN
Email rest	ults to:		yrinx.net.au yrinx.net.au	u (primary con	tact]		•			Project #: Project:	17102 Salter Point La	agoon Study				onmental p	
invo	pice to:	info@syrinx	.net.au							Laboratory	/: ALS					Phone:	9227 9355
		BW, LU								Address	s: 26 Rigali Way,	Wangara WA	6065		-	Fax:	9481 6299
Results rec		STANDARD	TAT							Quote #	t:					Page:	1 of 1
											•	· · · ·				•	
Sample Informa	tion									Analysis Req	uested						Comments
Lab ID	Samp	ile ID	Sample Matrix	Sampling Time	Sampling date	pH - EA005	Nutrient Suite including FRP*** Total Nitrogen, TKN, NO., NO2, NO3, NH3, Total Phosphorus, Reactive Phosphorus NT-8A	Agae – Total Count - MW024TOT -		Total metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)	Dissolved metals W-30 (As, Cd, Cr, Cu, Pb, Ni, Zn, Al, Fe, Se, Hg)						*** Additional field filtered bottle provided in a marked up metals bottle for the filterable reactive phosphorus analysis.
	SW		WATER	see bottle	30/05/2018	√	√	×		 ✓ 	V						•
2	SW		WATER	see bottle	30/05/2018	✓	✓	×		1	×						
3	SW	/03	WATER	see bottle	30/05/2018	✓ 				✓ 	· · · · · · · · · · · · · · · · · · ·						
<u> </u>	<u> </u>		WATER	see bottle	30/05/2018	✓	×										
5	GW		WATER	see bottle	30/05/2018	✓ ✓				- V - V		+ +				\vdash	
<u></u>	GW	/05	WATER	see bottle	30/05/2018	¥ .	v			+ *	+					<u>├</u> ├	
								····									
							· · · · ·		_								1
· · · ·																	
Relinquish	ned by: Br	onwyn Woo	dward				· · · · · · · · · · · · · · · · · · ·		Received by:	N		11		ples receiv			yes / no
Date 8	& time: 31	L/5/18 9:00a	m						Date & time:	21-	-5-18	ll a	M Seci	urity seal ir	ntact		yes / no
Sigr	nature:	79. Moo	deal		-				Signature:		e dest		Lab	date & sig	nature:		

Environmental Division Perth Work Order Reference EP1806696

Telephone: + 61-8-9406 1301

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: EP1806696		
Client Contact Address	: SYRINX ENVIRONMENTAL PL : bwoodward : 12 MONGER ST PERTH AUSTRALIA 6000	Contact	 Environmental Division Perth Customer Services EP 26 Rigali Way Wangara WA Australia 6065
E-mail Telephone Facsimile	: bwoodward@syrinx.net.au : :	Telephone	: ALSEnviro.Perth@alsglobal.com : +61-8-9406 1301 : +61-8-9406 1399
Project Order number C-O-C number Site Sampler	: 17102 Salter Point Lagoon Study : : : : bwoodward, L Urosevic	Quote number	 1 of 3 EP2017SYRENV0003 (EN/222/17) NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Rece Client Requested D		Issue Date Scheduled Reporting D	: 31-May-2018 ate : 11-Jun-2018

- *I* D (1)

Date

Delivery Details			
Mode of Delivery	: Carrier	Security Seal	: Not Available
No. of coolers/boxes	: 2	Temperature	: 1.7 - Ice Bricks present
Receipt Detail	:	No. of samples received / analysed	: 6/6

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please see scanned COC for sample discrepencies: extra samples , samples not received etc.
- Please direct any queries related to sample condition / numbering / breakages to Sample Receipt (SamplesPerth@alsenviro.com) .
- Analytical work for this work order will be conducted at ALS Environmental Perth. .
- Please direct any turnaround / technical queries to the laboratory contact designated above. .
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Algae Total Count MW024TOT analysis will be conducted by ALS Environmental, Sydney, NATA accreditation no. 825, Site No. 10911.
- . pH analysis should be conducted within 6 hours of sampling.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

Matrix: WATER	Client sampling date / time	Client sample ID	WATER - EA005F pH (PCT)	WATER - MW024 Total Algae Count	WATER - NT-08A Total Nitrogen + N	WATER - W-30 11 Metals	WATER - W-30T 11 Metals (Total)
EP1806696-001	30-May-2018 13:40	SW01	✓	✓	✓	✓	✓
EP1806696-002	30-May-2018 14:10	SW02	✓	✓	✓	✓	✓
EP1806696-003	30-May-2018 14:40	SW03	✓	✓	✓	✓	✓
EP1806696-004	30-May-2018 10:30	GW01	✓		✓	1	✓
EP1806696-005	30-May-2018 11:50	GW02	✓		✓	✓	✓
EP1806696-006	30-May-2018 09:20	GW03	✓		✓	✓	✓

Proactive Holding Time Report

The following table summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory.

Matrix: WATER

Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time.

Method		Due for	Due for	Samples Received		Instructions Received	
Client Sample ID(s)	Container	extraction	analysis	Date	Evaluation	Date	Evaluation
EA005-P: pH by PC	Titrator						
GW01	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	*		
GW02	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	×		
GW03	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	×		
SW01	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	×		
SW02	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	×		
SW03	Clear Plastic Bottle - Natural		30-May-2018	31-May-2018	*		

gen + NO2 + NO3 + NH3 + Total P ·

NT-08A

5

MW024 le Count

EA005P

ALS

Requested Deliverables

bwoodward

bwoodward		
 *AU Certificate of Analysis - NATA (COA) 	Email	bwoodward@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	bwoodward@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	bwoodward@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	bwoodward@syrinx.net.au
- Attachment - Report (SUBCO)	Email	bwoodward@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	bwoodward@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	bwoodward@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	bwoodward@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	bwoodward@syrinx.net.au
INVOICES INFO		
- A4 - AU Tax Invoice (INV)	Email	info@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	info@syrinx.net.au
L Urosevic		
 *AU Certificate of Analysis - NATA (COA) 	Email	lurosevic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lurosevic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lurosevic@syrinx.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	lurosevic@syrinx.net.au
- Attachment - Report (SUBCO)	Email	lurosevic@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	lurosevic@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	lurosevic@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	lurosevic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lurosevic@syrinx.net.au
LJILJANA PANTELIC		
 *AU Certificate of Analysis - NATA (COA) 	Email	lpantelic@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	lpantelic@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	lpantelic@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	lpantelic@syrinx.net.au
 Attachment - Report (SUBCO) 	Email	lpantelic@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	lpantelic@syrinx.net.au
 EDI Format - ENMRG (ENMRG) 	Email	lpantelic@syrinx.net.au
 EDI Format - ESDAT (ESDAT) 	Email	lpantelic@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	lpantelic@syrinx.net.au
M Hedges		
 *AU Certificate of Analysis - NATA (COA) 	Email	mhedges@syrinx.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	mhedges@syrinx.net.au
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	mhedges@syrinx.net.au
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	mhedges@syrinx.net.au
 Attachment - Report (SUBCO) 	Email	mhedges@syrinx.net.au
- Chain of Custody (CoC) (COC)	Email	mhedges@syrinx.net.au
- EDI Format - ENMRG (ENMRG)	Email	mhedges@syrinx.net.au
- EDI Format - ESDAT (ESDAT)	Email	mhedges@syrinx.net.au
- EDI Format - XTab (XTAB)	Email	mhedges@syrinx.net.au

CERTIFICATE OF ANALYSIS

Work Order	EP1806696	Page	: 1 of 7	
Client	SYRINX ENVIRONMENTAL PL	Laboratory	: Environmental Division Pert	h
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST	Address	: 26 Rigali Way Wangara WA	Australia 6065
	PERTH AUSTRALIA 6000			
Telephone		Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 31-May-2018 11:00	ANUTUR A
Order number	:	Date Analysis Commenced	: 31-May-2018	
C-O-C number	:	Issue Date	11-Jun-2018 13:21	
Sampler	: bwoodward, L Urosevic			HAC-MRA NATA
Site	:			
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 6			Accredited for compliance with
No. of samples analysed	: 6			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- Algae Total Count MW024TOT conducted by ALS Sydney, NATA accreditation no. 825, site no 10911.
- EG020:Metals LOR for particular sample(s) raised due to high TDS content.
- EG035F : Poor matrix spike recovery due to possible matrix interference.
- EG020: It is recognised that total concentration is less than dissolved for some metal analytes. However, the difference is within experimental variation of the methods.
- Under microscopic observation, debris present in sample #01, #02 and #03

Page : 3 of 7 Work Order : EP1806696 Client : SYRINX ENVIRONMENTAL PL Project : 17102 Salter Point Lagoon Study

ub-Matrix: WATER Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	GW01	GW02
· · · · · · · · · · · · · · · · · · ·	C	lient sampli	ng date / time	30-May-2018 13:40	30-May-2018 14:10	30-May-2018 14:40	30-May-2018 10:30	30-May-2018 11:50
Compound	CAS Number	LOR	Unit	EP1806696-001	EP1806696-002	EP1806696-003	EP1806696-004	EP1806696-005
				Result	Result	Result	Result	Result
EA005P: pH by PC Titrator								
pH Value		0.01	pH Unit	7.47	7.45	7.42	6.30	6.61
EG020F: Dissolved Metals by IC	P-MS							
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	<0.01	0.07	<0.05
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	<0.001	0.002	<0.005
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	0.0001	<0.0005
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.005
Copper	7440-50-8	0.001	mg/L	0.005	0.002	0.002	0.020	<0.005
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	<0.001	0.003	<0.005
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	<0.001	<0.005
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.05
Zinc	7440-66-6	0.005	mg/L	0.013	0.020	0.016	0.024	<0.025
Iron	7439-89-6	0.05	mg/L	0.07	0.09	0.09	0.68	0.80
G020T: Total Metals by ICP-MS	3							
Aluminium	7429-90-5	0.01	mg/L	0.09	0.10	0.12	4.75	0.14
Arsenic	7440-38-2	0.001	mg/L	0.001	<0.001	<0.001	0.009	<0.005
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0005
Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	<0.001	0.021	<0.005
Copper	7440-50-8	0.001	mg/L	0.004	0.002	0.005	0.073	<0.005
Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.001	0.006	<0.005
Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001	0.005	<0.005
Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.05
Zinc	7440-66-6	0.005	mg/L	0.015	0.018	0.021	<0.005	<0.025
Iron	7439-89-6	0.05	mg/L	0.28	0.33	0.34	4.14	0.95
G035F: Dissolved Mercury by	FIMS							
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
G035T: Total Recoverable Me								
Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
K055G: Ammonia as N by Disc								
Ammonia as N	7664-41-7	0.01	mg/L	0.12	0.11	0.10	0.14	0.45
K057G: Nitrite as N by Discret								
Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EK058G: Nitrate as N by Discre								
Nitrate as N	14797-55-8	0.01	mg/L	0.06	0.08	0.07	0.01	<0.01
	N (NOx) by Discrete Ana				0.00		0.01	0.01

Page	: 4 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	17102 Salter Point Lagoon Study

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	GW01	GW02
	Clie	ent samplin	ng date / time	30-May-2018 13:40	30-May-2018 14:10	30-May-2018 14:40	30-May-2018 10:30	30-May-2018 11:50
Compound	CAS Number	LOR	Unit	EP1806696-001	EP1806696-002	EP1806696-003	EP1806696-004	EP1806696-005
				Result	Result	Result	Result	Result
EK059G: Nitrite plus Nitrate as N (NC	x) by Discrete Analy	yser - Con	ntinued					
Nitrite + Nitrate as N		0.01	mg/L	0.06	0.08	0.07	0.01	<0.01
EK061G: Total Kjeldahl Nitrogen By D	Discrete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	0.5	0.5	0.5	0.5	0.7
EK062G: Total Nitrogen as N (TKN + I	NOx) by Discrete Ana	alvser						
^ Total Nitrogen as N		0.1	mg/L	0.6	0.6	0.6	0.5	0.7
EK067G: Total Phosphorus as P by D	iscrete Analyser							
Total Phosphorus as P		0.01	mg/L	0.07	0.09	0.07	0.07	0.04
EK071G: Reactive Phosphorus as P t	v discrete analyser		-					
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	0.02	0.03	0.03	<0.01	0.03
MW025: Bacillariophytes (Diatoms) -			5					
Cyclotella spp.		5	cells/ml		25	25		
Skeletonema spp.		5	cells/ml		25			
Thalassiosira spp.		5	cells/ml	425	650	300		
MW025: Bacillariophytes (Diatoms) - I		-						
Navicula spp.		5	cells/ml	25				
Nitzschia spp.		5	cells/ml	25	25	75		
MW025: Bacillariophytes (Diatoms) -								
Total Bacillariophytes		5	cells/ml	475	725	400		
		5	Cella/III	475	125	400		
MW025: Chlorophytes (Green Algae)		5	cells/ml	25		25		
Chlamydomonas spp.		5	cells/ml	25	300	350		
Dictyosphaerium spp. Kirchneriella spp.		5	cells/ml			25		
••		5	cells/ml		50	50		
Monoraphidium spp. Scenedesmus spp.		5	cells/ml		50	75		
			Cell3/III		50	75		
MW025: Chlorophytes (Green Algae)			collo/ml	05	400	505		
Total Chlorophytes		5	cells/ml	25	400	525		
MW025: Cyanophytes (Blue Green Al	gae) - TOTAL CYANC			-			1	1
Total Cyanophytes		5	cells/ml	<5	<5	<5		
MW025: Cyanophytes (Blue Green Al								
Total Potentially Toxic Cyanophytes		5	cells/ml	<5	<5	<5		
MW025: Flagellates - Cryptophytes								
Chroomonas spp.		5	cells/ml	175	350	375		
Cryptomonas spp.		5	cells/ml	175	300	375		

Page	5 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	 17102 Salter Point Lagoon Study

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	SW01	SW02	SW03	GW01	GW02
	Cl	ient sampli	ng date / time	30-May-2018 13:40	30-May-2018 14:10	30-May-2018 14:40	30-May-2018 10:30	30-May-2018 11:50
Compound	CAS Number	LOR	Unit	EP1806696-001	EP1806696-002	EP1806696-003	EP1806696-004	EP1806696-005
				Result	Result	Result	Result	Result
MW025: Flagellates - Euglenophytes								
Euglena spp.		5	cells/ml	100				
Trachelomonas spp.		5	cells/ml	5				
Eutreptiella spp.		5	cells/ml	25				
MW025: Flagellates - TOTAL FLAGELLA	TES							
Total Flagellates		5	cells/ml	480	650	750		
MW025: TOTAL ALGAE								
Total Algae Count		5	cells/ml	980	1780	1680		
MW025: TOTAL POTENTIALLY TOXIC A	LGAE							
Total Potentially Toxic Algae		5	cells/ml	<5	<5	<5		

Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	GW03	 	
	Client sampling date / time				 	
Compound	CAS Number	LOR	Unit	EP1806696-006	 	
				Result	 	
EA005P: pH by PC Titrator						
pH Value		0.01	pH Unit	7.12	 	
EG020F: Dissolved Metals by ICP-M	S					
Aluminium	7429-90-5	0.01	mg/L	0.03	 	
Arsenic	7440-38-2	0.001	mg/L	0.005	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.002	 	
Copper	7440-50-8	0.001	mg/L	0.012	 	
Nickel	7440-02-0	0.001	mg/L	0.005	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.014	 	
Iron	7439-89-6	0.05	mg/L	<0.05	 	
EG020T: Total Metals by ICP-MS						
Aluminium	7429-90-5	0.01	mg/L	4.84	 	
Arsenic	7440-38-2	0.001	mg/L	0.015	 	
Cadmium	7440-43-9	0.0001	mg/L	0.0001	 	
Chromium	7440-47-3	0.001	mg/L	0.018	 	
Copper	7440-50-8	0.001	mg/L	0.047	 	
Nickel	7440-02-0	0.001	mg/L	0.011	 	
Lead	7439-92-1	0.001	mg/L	0.003	 	
Selenium	7782-49-2	0.01	mg/L	<0.01	 	
Zinc	7440-66-6	0.005	mg/L	0.008	 	
Iron	7439-89-6	0.05	mg/L	3.00	 	
EG035F: Dissolved Mercury by FIMS	\$					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EG035T: Total Recoverable Mercury	y by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EK055G: Ammonia as N by Discrete	Analyser					
Ammonia as N	7664-41-7	0.01	mg/L	0.04	 	
EK057G: Nitrite as N by Discrete Ar						
Nitrite as N	14797-65-0	0.01	mg/L	0.01	 	
EK058G: Nitrate as N by Discrete A						
Nitrate as N	14797-55-8	0.01	mg/L	1.02	 	
EK059G: Nitrite plus Nitrate as N (N	Ox) by Discrete Ana	liyser				

Page	: 7 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	17102 Salter Point Lagoon Study

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	GW03					
	Clie	ent sampli	ng date / time	30-May-2018 09:20					
Compound	CAS Number	LOR	Unit	EP1806696-006					
				Result					
EK059G: Nitrite plus Nitrate as N (N	IOx) by Discrete Anal	yser - Co	ntinued						
Nitrite + Nitrate as N		0.01	mg/L	1.03					
EK061G: Total Kjeldahl Nitrogen By	Discrete Analyser								
Total Kjeldahl Nitrogen as N		0.1	mg/L	1.0					
EK062G: Total Nitrogen as N (TKN +	NOx) by Discrete An	alyser							
^ Total Nitrogen as N		0.1	mg/L	2.0					
EK067G: Total Phosphorus as P by	EK067G: Total Phosphorus as P by Discrete Analyser								
Total Phosphorus as P		0.01	mg/L	0.13					
EK071G: Reactive Phosphorus as P	by discrete analyser								
Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01					

QUALITY CONTROL REPORT

Work Order	: EP1806696	Page	: 1 of 7	
Client		Laboratory	: Environmental Division Po	erth
Contact	: bwoodward	Contact	: Customer Services EP	
Address	: 12 MONGER ST PERTH AUSTRALIA 6000	Address	: 26 Rigali Way Wangara V	VA Australia 6065
Telephone	:	Telephone	: +61-8-9406 1301	
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 31-May-2018	SMILLE .
Order number	:	Date Analysis Commenced	: 31-May-2018	
C-O-C number	:	Issue Date	11-Jun-2018	
Sampler	: bwoodward, L Urosevic			Hac-MRA NATA
Site	:			
Quote number	: EN/222/17			Accreditation No. 825
No. of samples received	: 6			Accredited for compliance with
No. of samples analysed	: 6			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Canhuang Ke	Inorganics Supervisor	Perth Inorganics, Wangara, WA
Chris Lemaitre	Laboratory Manager (Perth)	Perth Inorganics, Wangara, WA
Efua Wilson	Metals Chemist	Perth Inorganics, Wangara, WA
Indra Astuty	Instrument Chemist	Perth Inorganics, Wangara, WA
Sunitha Kannampilli	Phycologist	Sydney Phycology, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%
EA005P: pH by PC 1	Titrator (QC Lot: 17051	70)							
EP1806652-001	Anonymous	EA005-P: pH Value		0.01	pH Unit	6.57	6.53	0.611	0% - 20%
EP1806696-005	GW02	EA005-P: pH Value		0.01	pH Unit	6.61	6.62	0.151	0% - 20%
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 1704217)							
EP1806688-005	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0100	<0.0100	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.255	0.265	3.68	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.500	<0.500	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<1.00	<1.00	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<1.00	<1.00	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<5.00	<5.00	0.00	No Limit
EP1806688-015	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0100	<0.0100	0.00	No Limit
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.100	<0.100	0.00	No Limit
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.500	<0.500	0.00	No Limit
		EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<1.00	<1.00	0.00	No Limit
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<1.00	<1.00	0.00	No Limit
		EG020A-F: Iron	7439-89-6	0.05	mg/L	<5.00	<5.00	0.00	No Limit

Page	: 3 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020T: Total Meta	Is by ICP-MS (QC Lot:	: 1702907) - continued							
EP1806697-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.002	0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.00	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	0.02	<0.01	87.0	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	0.05	0.05	0.00	No Limit
EP1806495-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.00	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.008	0.007	14.9	No Limit
		EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.01	0.00	No Limit
		EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
		EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	<0.05	0.00	No Limit
EG035F: Dissolved	Mercury by FIMS (QC	Lot: 1704219)							
EP1806696-001	SW01	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EG035T: Total Rec	overable Mercury by F	IMS (QC Lot: 1704210)							
EP1806696-001	SW01	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP1806743-002	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EK055G: Ammonia	as N by Discrete Analy	/ser (QC Lot: 1692085)							
EP1806693-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.03	0.03	0.00	No Limit
EP1806699-002	Anonymous	EK055G: Ammonia as N	7664-41-7	0.01	mg/L	0.02	0.02	0.00	No Limit
EK057G: Nitrite as	N by Discrete Analyse	r (QC Lot: 1692621)			_				
EP1806721-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1806705-001	Anonymous	EK057G: Nitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK059G: Nitrite plu	-	y Discrete Analyser (QC Lot: 1692086)			0				
EP1806693-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	0.04	0.04	0.00	No Limit
EP1806699-002	Anonymous	EK059G: Nitrite + Nitrate as N		0.01	mg/L	2.51	2.52	0.672	0% - 20%
		ete Analyser (QC Lot: 1704609)			<u> </u>			=	
EP1806693-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	0.3	0.4	0.00	No Limit
EP1806699-003	Anonymous	EK061G: Total Kjeldahl Nitrogen as N EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	0.4	0.00	No Limit
	-			V. I	iiig/L	-0.1	0.1	0.00	
		ete Analyser (QC Lot: 1704607)		0.01	ma/l	0.02	0.02	0.00	No Limit
EP1806693-001	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	0.03	0.03	0.00	No Limit

Page	: 4 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EK067G: Total Phos	ohorus as P by Discrete A	nalyser (QC Lot: 1704607) - continued							
EP1806699-003	Anonymous	EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	<0.01	0.00	No Limit
EK071G: Reactive Pl	nosphorus as P by discret	e analyser (QC Lot: 1692620)							
EP1806683-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
EP1806705-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
A005P: pH by PC Titrator (QCLot: 1705170)								
EA005-P: pH Value			pH Unit		4 pH Unit	100	99	102
					7 pH Unit	99.7	99	102
EG020F: Dissolved Metals by ICP-MS(QCLot	t: 1704217)							
EG020A-F: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	95.2	84	120
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	99.6	84	120
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	98.7	86	120
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	90.4	85	120
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.7	84	120
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	96.2	85	120
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	90.4	84	120
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	90.5	88	120
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	101	89	120
EG020A-F: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	102	84	120
EG020T: Total Metals by ICP-MS(QCLot: 170	2907)							
EG020A-T: Aluminium	7429-90-5	0.01	mg/L	<0.01	0.5 mg/L	97.8	84	120
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	92.9	85	120
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	95.8	84	120
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	93.4	85	120
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	93.2	83	120
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	94.4	86	120
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	93.7	83	120
EG020A-T: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	93.8	83	120
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.2	84	120
EG020A-T: Iron	7439-89-6	0.05	mg/L	<0.05	0.5 mg/L	103	77	120
EG035F: Dissolved Mercury by FIMS (QCLot:	: 1704219)							
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	115	92	116
EG035T: Total Recoverable Mercury by FIMS	(QCI of: 1704210)							
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	98.6	87	115
EK055G: Ammonia as N by Discrete Analyser					<u> </u>			1
EK055G: Ammonia as N	7664-41-7	0.01	mg/L	<0.01	1 mg/L	98.6	87	115
		0.01	ing, E	.0.01	1 119/2	00.0		
EK057G: Nitrite as N by Discrete Analyser (C	14797-65-0	0.01	mg/L	<0.01	0.5 mg/L	104	86	112
EK057G: Nitrite as N	14/9/-05-0	0.01	IIIY/L	~0.01	0.5 mg/L	104	00	112

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound CAS	S Number	LOR	Unit	Result	Concentration	LCS	Low	High
EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser (C	QCLot: 16	692086) - continue	d					
EK059G: Nitrite + Nitrate as N		0.01	mg/L	<0.01	0.5 mg/L	104	92	112
EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot: 1	704609)							
EK061G: Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	10 mg/L	93.8	82	110
EK067G: Total Phosphorus as P by Discrete Analyser (QCLot: 1	704607)							
EK067G: Total Phosphorus as P		0.01	mg/L	<0.01	4.42 mg/L	92.0	70	130
EK071G: Reactive Phosphorus as P by discrete analyser (QCLot	t: 169262	20)						
EK071G: Reactive Phosphorus as P 1420	65-44-2	0.01	mg/L	<0.01	0.5 mg/L	103	87	115

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		EG020A-F: Arsenic EG020A-F: Cadmium EG020A-F: Chromium EG020A-F: Chromium EG020A-F: Copper EG020A-F: Lead EG020A-F: Nickel EG020A-F: Zinc *Lot: 1702907) EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Copper EG020A-T: Copper EG020A-T: Copper EG020A-T: Copper EG020A-T: Nickel EG020A-T: Nickel EG020A-T: Nickel		Matrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery I	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020F: Dissolved	I Metals by ICP-MS (QCLot: 1704217)						
EP1806688-006	Anonymous	EG020A-F: Arsenic	7440-38-2	1 mg/L	126	70	130
		EG020A-F: Cadmium	7440-43-9	0.25 mg/L	121	70	130
		EG020A-F: Chromium	7440-47-3	1 mg/L	113	70	130
		EG020A-F: Copper	7440-50-8	1 mg/L	113	70	130
		EG020A-F: Lead	7439-92-1	1 mg/L	114	70	130
		EG020A-F: Nickel	7440-02-0	1 mg/L	114	70	130
		EG020A-F: Zinc	7440-66-6	1 mg/L	120	70	130
EG020T: Total Met	als by ICP-MS (QCLot: 1702907)						
EP1806566-009	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	107	70	130
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	101	70	130
		EG020A-T: Chromium	7440-47-3	1 mg/L	96.4	70	130
		EG020A-T: Copper	7440-50-8	1 mg/L	95.8	70	130
		EG020A-T: Lead	7439-92-1	1 mg/L	97.0	70	130
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.0	70	130
		EG020A-T: Zinc	7440-66-6	1 mg/L	102	70	130
EG035F: Dissolved	Mercury by FIMS (QCLot: 1704219)						
EP1806688-016	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	# 19.2	70	130
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 1704210)						
EP1806696-002	SW02	EG035T: Mercury	7439-97-6	0.01 mg/L	103	70	130
EK055G: Ammonia	a as N by Discrete Analyser (QCLot: 1692085)						
EP1806693-001	Anonymous	EK055G: Ammonia as N	7664-41-7	1 mg/L	94.6	70	130

Page	: 7 of 7
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Sub-Matrix: WATER				M	Matrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK057G: Nitrite a	s N by Discrete Analyser (QCLot: 1692621)						
EP1806696-001	SW01	EK057G: Nitrite as N	14797-65-0	0.5 mg/L	105	70	130
EK059G: Nitrite p	lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 16	2086)					
EP1806693-001	Anonymous	EK059G: Nitrite + Nitrate as N		0.5 mg/L	104	70	130
EK061G: Total Kje	eldahl Nitrogen By Discrete Analyser (QCLot: 1704609)						
EP1806693-001	Anonymous	EK061G: Total Kjeldahl Nitrogen as N		10 mg/L	93.4	70	130
EK067G: Total Ph	osphorus as P by Discrete Analyser (QCLot: 1704607)						
EP1806693-001	Anonymous	EK067G: Total Phosphorus as P		2 mg/L	103	70	130
EK071G: Reactive	Phosphorus as P by discrete analyser (QCLot: 1692620)					
EP1806683-001	Anonymous	EK071G: Reactive Phosphorus as P	14265-44-2	0.5 mg/L	106	70	130

		Assessment to assist with	n Quality Review
Work Order	EP1806696	Page	: 1 of 10
Client		Laboratory	: Environmental Division Perth
Contact	: bwoodward	Telephone	: +61-8-9406 1301
Project	: 17102 Salter Point Lagoon Study	Date Samples Received	: 31-May-2018
Site	:	Issue Date	: 11-Jun-2018
Sampler	: bwoodward, L Urosevic	No. of samples received	: 6
Order number	:	No. of samples analysed	: 6

Order number : No. of samples analysed : 6
This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated

report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• NO Quality Control Sample Frequency Outliers exist.

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EG035F: Dissolved Mercury by FIMS	EP1806688016	Anonymous	Mercury	7439-97-6	19.2 %	70-130%	Recovery less than lower data quality
							objective

Outliers : Analysis Holding Time Compliance

Matrix: WATER

Matrix: WATED

Method		E	ktraction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Days	Date analysed	Due for analysis	Days
				overdue			overdue
EA005P: pH by PC Titrator							
Clear Plastic Bottle - Natural							
SW01,	SW02,				06-Jun-2018	30-May-2018	7
SW03,	GW01,						
GW02,	GW03						

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

Matrix: WATER							breach ; • = with	in noiuing un
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA005P: pH by PC Titrator								
Clear Plastic Bottle - Natural (EA005-P)								
SW01,	SW02,	30-May-2018				06-Jun-2018	30-May-2018	SC
SW03,	GW01,							
GW02,	GW03							
EG020F: Dissolved Metals by ICP-MS								
Clear Plastic Bottle - Filtered; Lab-acidifi	ied (EG020A-F)							
SW01,	SW02,	30-May-2018				07-Jun-2018	26-Nov-2018	 ✓
SW03,	GW01,							
GW02,	GW03							

Page	: 3 of 10
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

od				2141444.01	. • = Holding time	breach, • - with	n holding tim
	Sample Date	Ex	traction / Preparation			Analysis	
tainer / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
20T: Total Metals by ICP-MS							
Plastic Bottle - Unfiltered; Lab-acidified (EG020A-T)							
V01, SW02,	30-May-2018	06-Jun-2018	26-Nov-2018	1	06-Jun-2018	26-Nov-2018	✓
V03, GW01,							
V02, GW03							
35F: Dissolved Mercury by FIMS							
Plastic Bottle - Filtered; Lab-acidified (EG035F)							
V01, SW02,	30-May-2018				07-Jun-2018	27-Jun-2018	✓
V03, GW01,							
V02, GW03							
35T: Total Recoverable Mercury by FIMS							
Plastic Bottle - Unfiltered; Lab-acidified (EG035T)							
V01, SW02,	30-May-2018				07-Jun-2018	27-Jun-2018	 ✓
V03, GW01,							
V02, GW03							
55G: Ammonia as N by Discrete Analyser							
Plastic Bottle - Sulfuric Acid (EK055G)							
V01, SW02,	30-May-2018				31-May-2018	27-Jun-2018	 ✓
V03, GW01,							
V02, GW03							
i7G: Nitrite as N by Discrete Analyser							
Plastic Bottle - Natural (EK057G)							
V01, SW02,	30-May-2018				31-May-2018	01-Jun-2018	✓
V03, GW01,							
V02, GW03							
i9G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser							
Plastic Bottle - Sulfuric Acid (EK059G)							
V01, SW02,	30-May-2018				31-May-2018	27-Jun-2018	✓
V03, GW01,							
V02, GW03							
31G: Total Kjeldahl Nitrogen By Discrete Analyser							
Plastic Bottle - Sulfuric Acid (EK061G)							
V01, SW02,	30-May-2018	07-Jun-2018	27-Jun-2018	1	07-Jun-2018	27-Jun-2018	✓
V03, GW01,							
V02, GW03							
37G: Total Phosphorus as P by Discrete Analyser							
Plastic Bottle - Sulfuric Acid (EK067G)							
V01, SW02,	30-May-2018	07-Jun-2018	27-Jun-2018	1	07-Jun-2018	27-Jun-2018	✓
V03, GW01,							
V02, GW03							

Page	: 4 of 10
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK071G: Reactive Phosphorus as P by discrete ana	alyser							
Clear Plastic Bottle - Natural (EK071G) SW01, SW03, GW02,	SW02, GW01, GW03	30-May-2018				31-May-2018	01-Jun-2018	*
MW025: Bacillariophytes (Diatoms) - Centrales								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Bacillariophytes (Diatoms) - Pennales								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Bacillariophytes (Diatoms) - TOTAL BACIL	LARIOPHYTES							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Chlorophytes (Green Algae)								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Chlorophytes (Green Algae) - TOTAL CHLC	OROPHYTES							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Cyanophytes (Blue Green Algae)								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Cyanophytes (Blue Green Algae) - Other Cy	yanophytes							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Cyanophytes (Blue Green Algae) - TOTAL (CYANOPHYTES							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Cyanophytes (Blue Green Algae) - TOTAL I	POTENTIALLY TOXIC CYANOPHYTES							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~

Page	5 of 10
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW025: Cyanophytes (Blue Green Algae) - Unidentif	fied Cyanophytes							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Dictyochophyceae								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Dictyochophyceae- TOTAL DICTYOCHOPH	YCEAE							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - Cryptophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - Euglenophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - Other Flagellates								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - Pyrrophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - TOTAL FLAGELLATES								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Flagellates - Unidentified Flagellates								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Golden and Yellow-Green Algae								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~

Page	: 6 of 10
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
MW025: Golden and Yellow-Green Algae - TOTAL G	GOLDEN AND YELLOW-GREEN ALGAE	E						
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Haptophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Pyrrophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Raphidophytes								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: Raphidophytes - TOTAL RAPHIDOPHYTES	S							
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: TOTAL ALGAE								
Plastic Bottle - Lugols lodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~
MW025: TOTAL POTENTIALLY TOXIC ALGAE								
Plastic Bottle - Lugols Iodine (MW025_TOT) SW01, SW03	SW02,	30-May-2018				05-Jun-2018	26-Nov-2018	~

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Quality Control Sample Type		0	ount		n: × = Quality Co Rate (%)		Quality Control Specification	
Analytical Methods	Method		Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)				, 10144				
Ammonia as N by Discrete analyser	EK055G	2	14	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	8	12.50	10.00		NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	2	19	10.53	10.00		NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	2	14	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	11	18.18	10.00	<u> </u>	NEPM 2013 B3 & ALS QC Standard	
pH by PC Titrator	EA005-P	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	2	17	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	2	15	13.33	10.00	✓ ✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	2	20	10.00	10.00		NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)						_		
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	 Image: A second s	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	 ✓ 	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	~	NEPM 2013 B3 & ALS QC Standard	
pH by PC Titrator	EA005-P	2	20	10.00	10.00	~	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	~	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Ammonia as N by Discrete analyser	EK055G	1	14	7.14	5.00	1	NEPM 2013 B3 & ALS QC Standard	

Page	: 8 of 10
Work Order	: EP1806696
Client	: SYRINX ENVIRONMENTAL PL
Project	: 17102 Salter Point Lagoon Study

Matrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		С	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual Expected Evaluation		Evaluation	
Matrix Spikes (MS) - Continued							
Dissolved Mercury by FIMS	EG035F	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Reactive Phosphorus as P-By Discrete Analyser	EK071G	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH by PC Titrator	EA005-P	WATER	In house: Referenced to APHA 4500 H+ B. This procedure determines pH of water samples by automated ISE. This method is compliant with NEPM (2013) Schedule B(3)
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Ammonia as N by Discrete analyser	EK055G	WATER	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by direct colorimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite as N by Discrete Analyser	EK057G	WATER	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Nitrate as N by Discrete Analyser	EK058G	WATER	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM (2013) Schedule B(3)
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	WATER	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	WATER	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Nitrogen as N (TKN + Nox) By Discrete Analyser	EK062G	WATER	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM (2013) Schedule B(3)

Analytical Methods	Method	Matrix	Method Descriptions
Total Phosphorus as P By Discrete Analyser	EK067G	WATER	In house: Referenced to APHA 4500-P H, Jirka et al (1976), Zhang et al (2006). This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM (2013) Schedule B(3)
Reactive Phosphorus as P-By Discrete Analyser	EK071G	WATER	In house: Referenced to APHA 4500-P F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM (2013) Schedule B(3)
Total Algae Count	MW025 TOT	WATER	In house: Referenced to Hotzel and Groome, 1999 and APHA 10200
Preparation Methods	Method	Matrix	Method Descriptions
TKN/TP Digestion	EK061/EK067	WATER	In house: Referenced to APHA 4500 Norg - D; APHA 4500 P - H. This method is compliant with NEPM (2013) Schedule B(3)
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)

APPENDIX 7 VEGETATION SPECIES

Species list for the Salter Point study area - April 2018

Family	Scientific name	Common name
Fabaceae	Acacia cyclops	Coastal Wattle
Fabaceae	Acacia lasiocarpa	Panjang
Fabaceae	Acacia pulchella	Prickly Moses
Fabaceae	Acacia saligna	Orange Wattle
Fabaceae	Acacia stenoptera	Narrow Winged Wattle
Fabaceae	Acacia willdenowiana	Grass Wattle
Cupressaceae	Callitris pyramidalis	Swamp Cypress
Proteaceae	Adenanthos cygnorum	Woolly Bush
Restionaceae	Alexgeorgea nitens	
Casuarinaceae	Allocasuarina fraseriana	Sheoak
Casuarinaceae	Allocasuarina humilis	Dwarf sheoak
Poaceae	Amphipogon turbinatus	
Loranthaceae	Amyema linophylla	Mistletoe
Haemodoraceae	Anigozanthos manglesii	Red and green kangaroo paw
Myrtaceae	Astartea scoparia	
Proteaceae	Banksia menziesii	Firewood banksia
Cyperaceae	Baumea juncea	Bare Twig Rush
Cyperaceae	Bolboschoenus caldwellii	Marsh Club-rush
Fabaceae	Bossiaea eriocarpa	Common Brown Pea
Liliaceae	Burchardia umbellata	Milkmaids
Orchidaceae	Caladenia flava	Cowslip Orchid
Portulacaceae	Caladerna nava Calandrinia sp.	
Commelinaceae	Cartonema philydroides	
		Dodder Laurel
Lauraceae	Cassytha racemosa Casuarina obesa	
Casuarinaceae		Swamp Sheoak
Chenopodiaceae	Chenopodium album	Fat Hen
Haemodoraceae	Conostylis aculeata	Prickly Conostylis
Haemodoraceae	Conostylis candicans	Grey cottonhead
Myrtaceae	Corymbia calophylla	Marri
Liliaceae	Corynotheca micrantha	
Asteraceae	Cotula coronopifolia	Water buttons
Crassulaceae	Crassula colorata	Dense Stonecrop
Goodeniaceae	Dampiera linearis	Common Dampiera
Xanthorrhoeaceae	Dasypogon bromeliifolius	Pineapple Bush
Restionaceae	Desmocladus flexuosus	
Liliaceae	Dianella revoluta	Blueberry Lily
Proteaceae	Banksia sessilis	Parrot Bush
Myrtaceae	Eremaea pauciflora	
Myrtaceae	Eucalyptus gomphocephala	Tuart
Myrtaceae	Eucalyptus marginata	Jarrah
Cyperaceae	Gahnia trifida	Coast Saw-sedge
Fabaceae	Gompholobium tomentosum	Hairy Yellow Pea
Haemodoraceae	Haemodorum spicatum	Mardja
Proteaceae	Hakea varia	Variable leafed Heaka
Lamiaceae	Hemiandra pungens	Snake bush
Dilleniaceae	Hibbertia hypericoides	Yellow Buttercups
Dilleniaceae	Hibbertia racemosa	Stalked Guinea Flower
Myrtaceae	Hypocalymma angustifolium	White Myrtle
Cyperaceae	Ficinia nodosa	Knotted Club Rush
Fabaceae	Jacksonia furcellata	Grey Stinkwood
Fabaceae	Jacksonia sternbergiana	Stinkwood
Juncaceae	Juncus kraussii	Sea Rush
Juncaceae	Juncus pallidus	Pale Rush

Fabaceae	Kennedia prostrata	Scarlet Runner
Liliaceae	Laxmannia squarrosa	
Cyperaceae	Lepidosperma gladiatum	Coast Sword-sedge
Goodeniaceae	Leschenaultia floribunda	Free-flowering Leschenaultia
Xanthorrhoeaceae	Lomandra preissii	
Restionaceae	Lyginia barbata	
Zamiaceae	Macrozamia riedlei	Zamia
Myrtaceae	Melaleuca cuticularis	Saltwater Paperbark
Myrtaceae	Melaleuca rhaphiophylla	Swamp Paperbark
Loranthaceae	Nuytsia floribunda	Christmas Tree
Rubiaceae	Opercularia vaginata	
Iridaceae	Patersonia occidentalis	Purple Flag
Haemodoraceae	Phlebocarya ciliata	
Scrophulariaceae	Myoporum insulare	Blueberry Tree
Chenopodiaceae	Rhagodia baccata	Sea berry saltbush
Fabaceae	Samolus repens	Creeping brookweed
Chenopodiaceae	Sarcocornia quinqueflora	
Goodeniaceae	Scaevola crassifolia	Thick-leaved Fan-flower
Cyperaceae	Schoenus curvifolius	
Cyperaceae	Schoenus subfascicularis	
Myrtaceae	Scholtzia involucrata	Spiked Scholtzia
Pittosporaceae	Sollya heterophylla	Australian bluebell
Poaceae	Sporobolus virginicus	Marine Couch
Chenopodiaceae	Suaeda australis	Seablite
Fabaceae	Templetonia retusa	Cockies Tongues
Chenopodiaceae	Threlkeldia diffusa	Coast Bonefruit
Apiaceae	Trachymene pilosa	Native Parsnip
Xanthorrhoeaceae	Xanthorrhoea brunonis	
Xanthorrhoeaceae	Xanthorrhoea preissii	Grass Tree
WEEDS		
Poaceae	Avena fatua	Wild oats
Brassicaceae	Brassica tournefortii	Mediterranean Turnip
Poaceae	Briza minor	Shivery Grass
Aizoaceae	Carpobrotus edulis	Hottentot Fig
Asteraceae	Conyza bonariensis	Fleabane
Poaceae	Cynodon dactylon	Couch
Poaceae	Ehrharta calycina	Veldt Grass
Fumariaceae	Fumaria capreolata	Whiteflower Fumitory
Iridaceae	Gladiolus caryophyllaceus	Wild Gladiolus
Asteraceae	Hypochaeris glabra	Smooth Cats-ear
Oxalidaceae	Oxalis pes-caprae	Soursob
Brassicaceae	Raphanus raphanistrum	Wild radish
Asteraceae	Senecio lautus	Variable Groundsel
Asteraceae	Sonchus oleraceus*	Common sowthistle
Asteraceae	Symphyotrichum subulatum	Bushy starwort
Asteraceae	Urospermum picroides	False hawkbit
Asteraceae	Ursinia anthemoides	Ursinia
Asteraceae	Vellereophyton dealbatum	White Cudweed

APPENDIX 8 FAUNA SPECIES

Table 1. Fish species returned from desktop review. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated.

Latin Name	English Name	23/02/18
Acanthopagrus butcheri	Black Bream	
Aldrichetta forsteri	Yelloweye Mullet	Х
Amniataba caudavittata	Yellowtail Grunter	Х
Apogon rueppellii	Gobbleguts	
Arenigobius bifrenatus	Bridled Goby	Х
Argyrosomus japonicus	Mulloway	
Cnidoglanis macrocephalus	Estuary Cobbler	
Dactylopus dactylopus	Finger Dragonet	
Leptatherina wallacei	Wallace's Hardyhead	Х
Hyporhamphus regularis	River Garfish	
Mugil cephalus	Sea Mullet	
Nematalosa vlaminghi	Perth Herring	
Gambusia holbrooki	Mosquitofish	X (introduced)
Phalloceros harpagos	Leopard Fish	(introduced)
Rhabdosargus sarba	Tarwhine	
Torquigener pleurogramma	Common Blowfish	

Table 2. Frog species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated.

Latin Name	English Name	Siemon (2000)	23/02/18
HYLIDAE (Tree frogs)			
Litoria adelaidensis	Slender Tree Frog		
Litoria moorei	Motorbike Frog		
LIMNODYNASTIDAE (Burrowing	Frogs)		
Heleioporus eyrei	Moaning Frog		
Limnodynastes dorsalis	Western Banjo Frog	Х	
MYOBATRACHIDAE (Ground fro	gs)		
Crinia georgiana	Quacking Frog	Х	
Crinia glauerti	Clicking Frog	Х	
Crinia insignifera	Squelching Frog	Х	
Myobatrachus gouldii	Turtle Frog		
Pseudophryne guentheri	Crawling Toadlet		

Table 3. Reptile species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated.

Latin Name	English Name	Siemon (2000)	2018
CHELUIDAE			
Chelodina colliei	South-West Long-necked Tortoise		
DIPLODACTYLIDAE			
Strophurus spinigerus	Western Spiny-tailed Gecko		
GEKKONIDAE			
Christinus marmoratus	Marbled Gecko		
PYGOPODIDAE			
Lialis burtonis	Burton's Legless Lizard	Х	
Aprasia repens	Sand-plain Worm-lizard		
AGAMIDAE			
Pogona minor	Western Bearded Dragon		
SCINCIDAE			
Acritoscincus trilineatus	Western Three-lined Skink	Х	
Cryptoblepharus buchananii	Fence Skink	х	
Ctenotus australis	Long-tailed Ctenotus		
Ctenotus fallens	West Coast Ctenotus		
Hemiergis quadrilineata	Two-toed Mulch Skink		
Lerista elegans	West Coast Four-toed Lerista	Х	
Lerista lineata	Perth Lined Lerista	Х	
Menetia greyii	Dwarf Skink	Х	Х
Morethia lineoocellata			
Morethia obscura			
Tiliqua rugosa	Bobtail		Х
VARANIDAE			
Varanus gouldii	Bungarra or Sand Goanna		
TYPHLOPIDAE			
Anilios australis	Southern Blind Snake	Х	
ELAPIDAE			
Notechis scutatus	Tiger Snake		
Pseudonaja affinis	Dugite	Х	Х

Table 4. Bird species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated. (Conservation Listing: CS1 = listed under WA State and/or Commonwealth legislation; CS2 = listed as Priority by DBCA; CS3 = considered locally significant (including species listed by DEP 2000).

	Cons. Listing	Siemon 2000	2018	
Anatidae (ducks, geese a	nd swans)			
Black Swan	Cygnus atratus		Х	X (13)
Australian Shelduck	Tadorna tadornoides		Х	
Pacific Black Duck	Anas superciliosus		Х	
Grey Teal	Anas gibberifrons		Х	
Domestic Mallard	Anas platyrhnychos			
Australasian Shoveler	Anas rhynchotis			
Pink-eared Duck	Malacorhynchus membranaceous			
Hardhead	Aythya australis	CS3	Х	
Australian Wood Duck	Chenonetta jubata		Х	
Musk Duck	Biziura lobata	CS3	Х	•••••••
Blue-billed Duck	Oxyura australis	CS3		•••••••
Podicepididae (grebes)				
Great Crested Grebe	Podiceps cristatus			
Hoary-headed Grebe	Poliocephalus poliocephalus		Х	
Australasian Grebe	Tachybaptus novaehollandiae		Х	
Anhingidae (darters)	,, j, j			
Darter	Anhinga melanogaster		Х	
	norants)			
Great Cormorant	Phalacrocorax carbo		X	
Pied Cormorant	Phalacrocorax varius		X	
Little Black Cormorant	Phalacrocorax sulcirostris		~	
Little Pied Cormorant	Phalacrocorax melanoleucos		X	X (1)
Pelicanidae (pelicans)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Australian Pelican	Pelecanus conspicillatus		X	X (3)
Ardeidae (herons and eg	rets)			7. (0)
White-faced Heron	Egretta novaehollandiae		X	X (1)
Little Egret	Egretta garzetta			,,,,,
White-necked Heron	Ardea pacifica			
Eastern Great Egret	Egretta modesta		X	X (1)
Nankeen Night Heron	Nycticorax caledonicus	CS3		,,,,,
Plataleidae (ibis and spoo				
Glossy Ibis	Plegadis falcinellus	CS1		
Australian White Ibis	Threskiornis molucca	001	X	
Straw-necked Ibis	Threskiornis spinicollis		~	
Yellow-billed Spoonbill	Platalea flavipes		X	
Accipitridae (kites, hawks				
Eastern Osprey	Pandion cristatus	CS1	X	X (1)
Black-shouldered Kite	Elanus notatus	001	X	
Whistling Kite	Haliastur sphenurus	CS3	X	
White-bellied Sea-Eagle	Haliaeetus leucogaster			
Swamp Harrier	Circus approximans			Х
Brown Goshawk	Accipiter fasciatus	CS3	v	^
Collared Sparrowhawk	Accipiter Cirrhocephalus	CS3	X	
	Hieraaetus morphnoides	CS3	^	
Little Eagle		633		
Falconidae (falcons)	Falaa barizara	000		
Brown Falcon	Falco berigora	CS3	X	
Peregrine Falcon	Falco peregrinus	CS1	V	
Australian Hobby	Falco longipennis		X	
Nankeen Kestrel	Falco cenchroides		X	

Species	Cons. Listing	Siemon 2000	2018
Rallidae (crakes and rails)			
Buff-banded Rail Rallus philippensis			Х
Baillon's Crake Porzana pusilla			
Spotless Crake Porzana tabuensis			
Australian Crake Porzana fluminea			
Dusky Moorhen Gallinula tenebrosa	CS3	Х	
Purple Swamphen Porphyrio porphyrio			
Eurasian Coot Fulica atra		X	
Scolopacidae (sandpipers)			
Common Greenshank Tringa nebularia	CS1	X	
Wood Sandpiper Tringa stagnatilis	CS1	~	
Common Sandpiper Tringa staginatins	CS1	Х	X (1)
Recurvirostridae (stilts and avocets)	031	^	A (I)
· · · · · · · · · · · · · · · · · · ·		V	
Black-winged Stilt Himantopus himantopus		X	
Red-necked Avocet Recurvirostra novaehollandiae		Х	
Charadriidae (lapwings and plovers)			
Grey Plover Pluvialis squatarola	CS1		<u>X</u>
Red-capped Plover Charadrius ruficapillus			Х
Black-fronted Dotterel Elseyornis melanops			Х
Laridae (gulls and terns)			
Silver Gull Chroicocephalus novaehollandiae		Х	X (3)
Caspian Tern Sterna caspia		Х	
Crested Tern Thalasseus bergii	CS1	Х	
Columbidae (pigeons and doves)			
Rock Pigeon Columbia livia	Int		
Spotted Dove Streptopelia chinensis	Int	X	
Laughing Dove Streptopelia senegalensis	Int	X	
Cacatuidae (cockatoos)	III	Χ	
	CS1		
, , , , , , , , , , , , , , , , , , ,	CS1 CS1	X	Х
Carnaby's Black-Cockatoo Calyptorhynchus latirostris	651	×	λ
Galah Cacatua roseicapilla			
Eastern Long-billed Corella Cacatua tenuirostris	Int		
Little Corella Cacatua sanguinea	Int		
Western Corella Cacatua pastinator			
Psittacidae (lorikeets and parrots)			
Rainbow Lorikeet Trichoglossus haematodus	Int		
Red-capped Parrot Purpureicephalus spurius			
Australian Ringneck Barnardius zonarius		X	
Cuculidae (cuckoos)			
Pallid Cuckoo Cuculus pallidus			
Fan-tailed Cuckoo Cuculus pyrrhophanus			
Horsfield's Bronze-Cuckoo Chrysococcyx basalis			
Shining Bronze-Cuckoo Chrysococcyx lucidus			
Strigidae (hawk-owls)			
Southern Boobook Owl Ninox novaeseelandiae			
Tytonidae (barn owls)			
Barn Owl Tyto alba			
Podargidae (frogmouths)			
Tawny Frogmouth Podargus strigoides			
Apodidae (swifts)			
Fork-tailed Swift Apus pacificus	CS1		
Halcyonidae (forest kingfishers)			
Laughing Kookaburra Dacelo novaeguineae	Int	Х	
Sacred Kingfisher Todiramphus sanctus		Х	

Spee	Cons. Listing	Siemon 2000	2018	
Rainbow Bee-eater	Merops ornatus		Х	
Maluridae (fairy-wrens)				
Splendid Fairy-wren	Malurus splendens	CS3		
Pardalotidae (pardalotes)				
Spotted Pardalote	Pardalotus punctatus			
Striated Pardalote	Pardalotus striatus			
White-browed Scrubwren	Sericornis frontalis	CS3		
Western Gerygone	Gerygone fusca			Х
Weebill	Smicrornis brevirostris	CS3		
Inland Thornbill	Acanthiza apicalis	CS3	Х	
Yellow-rumped Thornbill	Acanthiza chrysorrhoa	CS3	Х	
Meliphagidae (honeyeaters)				
Red Wattlebird	Anthochaera carunculata		Х	
Western Wattlebird	Anthochaera lunulata	CS3		
Singing Honeyeater	Lichenostomus virescens		X	Х
Brown Honeyeater	Lichmera indistincta		Х	
New Holland Honeyeater	Phylidonyris novaehollandiae	CS3		
White-cheeked Honeyeater	Phylidonyris nigra	CS3		Х
Pachycephalidae (whistlers)				
Rufous Whistler	Pachycephala rufiventris			
Dicruridae (flycatchers)				
Magpie-lark	Grallina cyanoleuca		Х	Х
Grey Fantail	Rhipidura fuliginosa		Х	
Willie Wagtail	Rhipidura leucophrys		Х	Х
Campephagidae (cuckoo-shrike	es)			
Black-faced Cuckoo-shrike	Coracina novaehollandiae		Х	
White-winged Triller	Lalage sueurii			
Artamidae (woodswallows, mag				
Grey Butcherbird	Cracticus torquatus		Х	
Australian Magpie	Gymnorhina tibicen		Х	
Corvidae (ravens and crows)	2			
Australian Raven	Corvus coronoides		Х	
Motacillidae (pipits and true wa	gtails)			
Richard's (Australian) Pipit	Anthus novaeseelandiae		Х	
Dicaeidae (flowerpeckers)				
Mistletoebird	Diceum hirundinaceum		Х	Х
Hirundinidae (swallows)				
Welcome Swallow	Hirundo neoxena		X	Х
Tree Martin	Hirundo nigricans		X	
Sylviidae (old world warblers)	<u> </u>			
Australian Reed-Warbler	Acrocephalus australis		X	
Little Grassbird	Megalurus gramineus		Х	
Zosteropidae (white-eyes)	~ ~ ~			
Silvereye	Zosterops lateralis		X	

Table 5. Mammal species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated. (Conservation Listing: CS1 = listed under WA State and/or Commonwealth legislation; CS2 = listed as Priority by DBCA; CS3 = considered locally significant (including species listed by DEP 2000).

Latin Name	English Name	Cons Listing	Siemon 2000	2018
PERAMELIDAE				
Quenda (Bandicoot)	Isoodon fusciventer	CS2	Х	
PHALANGERIDAE				
Common Brushtail Possum	Trichosurus vulpecula	CS3		
MURIDAE				
Water-rat, Rakali	Hydromys chrysogaster	CS2		
House Mouse	Mus musculus	Int	Х	
Brown Rat	Rattus norvegicus			
Black Rat	Rattus rattus	Int	Х	
LEPORIDAE				
Rabbit	Oryctolagus cuniculus	Int		
MOLOSSIDAE				
White-striped Freetail Bat	Austronomus australis		Х	
VESPERTILIONIDAE				
Gould's Wattled Bat	Chalinolobus gouldii			
Lesser Long-eared Bat	Nyctophilus geoffroyi	CS3		
Southern Forest Bat	Vespadelus regulus			
CANIDAE				
Red Fox	Vulpes vulpes	Int	Х	
FELIDAE				
Cat	Felis catus	Int	Х	Х

Table 1. Fish species returned from desktop review. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated.

Latin Name	English Name	23/02/18
Acanthopagrus butcheri	Black Bream	
Aldrichetta forsteri	Yelloweye Mullet	Х
Amniataba caudavittata	Yellowtail Grunter	Х
Apogon rueppellii	Gobbleguts	
Arenigobius bifrenatus	Bridled Goby	Х
Argyrosomus japonicus	Mulloway	
Cnidoglanis macrocephalus	Estuary Cobbler	
Dactylopus dactylopus	Finger Dragonet	
Leptatherina wallacei	Wallace's Hardyhead	Х
Hyporhamphus regularis	River Garfish	
Mugil cephalus	Sea Mullet	
Nematalosa vlaminghi	Perth Herring	
Gambusia holbrooki	Mosquitofish	X (introduced)
Phalloceros harpagos	Leopard Fish	(introduced)
Rhabdosargus sarba	Tarwhine	
Torquigener pleurogramma	Common Blowfish	

Table 2. Frog species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated.

Latin Name	English Name	Siemon (2000)	23/02/18
HYLIDAE (Tree frogs)			
Litoria adelaidensis	Slender Tree Frog		
Litoria moorei	Motorbike Frog		
LIMNODYNASTIDAE (Burrowing	Frogs)		
Heleioporus eyrei	Moaning Frog		
Limnodynastes dorsalis	Western Banjo Frog	Х	
MYOBATRACHIDAE (Ground fro	gs)		
Crinia georgiana	Quacking Frog	Х	
Crinia glauerti	Clicking Frog	Х	
Crinia insignifera	Squelching Frog	Х	
Myobatrachus gouldii	Turtle Frog		
Pseudophryne guentheri	Crawling Toadlet		

Table 3. Reptile species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated.

Latin Name	English Name	Siemon (2000)	2018
CHELUIDAE			
Chelodina colliei	South-West Long-necked Tortoise		
DIPLODACTYLIDAE			
Strophurus spinigerus	Western Spiny-tailed Gecko		
GEKKONIDAE			
Christinus marmoratus	Marbled Gecko		
PYGOPODIDAE			
Lialis burtonis	Burton's Legless Lizard	Х	
Aprasia repens	Sand-plain Worm-lizard		
AGAMIDAE			
Pogona minor	Western Bearded Dragon		
SCINCIDAE			
Acritoscincus trilineatus	Western Three-lined Skink	Х	
Cryptoblepharus buchananii	Fence Skink	х	
Ctenotus australis	Long-tailed Ctenotus		
Ctenotus fallens	West Coast Ctenotus		
Hemiergis quadrilineata	Two-toed Mulch Skink		
Lerista elegans	West Coast Four-toed Lerista	Х	
Lerista lineata	Perth Lined Lerista	Х	
Menetia greyii	Dwarf Skink	Х	Х
Morethia lineoocellata			
Morethia obscura			
Tiliqua rugosa	Bobtail		Х
VARANIDAE			
Varanus gouldii	Bungarra or Sand Goanna		
TYPHLOPIDAE			
Anilios australis	Southern Blind Snake	Х	
ELAPIDAE			
Notechis scutatus	Tiger Snake		
Pseudonaja affinis	Dugite	Х	Х

Table 4. Bird species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated. (Conservation Listing: CS1 = listed under WA State and/or Commonwealth legislation; CS2 = listed as Priority by DBCA; CS3 = considered locally significant (including species listed by DEP 2000).

Species		Cons. Listing	Siemon 2000	2018
Anatidae (ducks, geese a	nd swans)			
Black Swan	Cygnus atratus		Х	X (13)
Australian Shelduck	Tadorna tadornoides		Х	
Pacific Black Duck	Anas superciliosus		X	
Grey Teal	Anas gibberifrons		Х	
Domestic Mallard	Anas platyrhnychos			
Australasian Shoveler	Anas rhynchotis			
Pink-eared Duck	Malacorhynchus membranaceous			
Hardhead	Aythya australis	CS3	Х	
Australian Wood Duck	Chenonetta jubata		Х	
Musk Duck	Biziura lobata	CS3	Х	
Blue-billed Duck	Oxyura australis	CS3		
Podicepididae (grebes)				
Great Crested Grebe	Podiceps cristatus			
Hoary-headed Grebe	Poliocephalus poliocephalus		Х	
Australasian Grebe	Tachybaptus novaehollandiae		Х	
Anhingidae (darters)	· · · · · · · · · · · · · · · · · · ·			
Darter	Anhinga melanogaster		Х	
	norants)			
Great Cormorant	Phalacrocorax carbo		Х	
Pied Cormorant	Phalacrocorax varius		X	
Little Black Cormorant	Phalacrocorax sulcirostris		~~~~~	
Little Pied Cormorant	Phalacrocorax melanoleucos		X	X (1)
Pelicanidae (pelicans)	i halaorooonax metallolouooo			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Australian Pelican	Pelecanus conspicillatus		X	X (3)
Ardeidae (herons and eg	rets)			,, (0)
White-faced Heron	Egretta novaehollandiae		X	X (1)
Little Egret	Egretta garzetta			
White-necked Heron	Ardea pacifica			
Eastern Great Egret	Egretta modesta		X	X (1)
Nankeen Night Heron	Nycticorax caledonicus	CS3		
Plataleidae (ibis and spoo				
Glossy Ibis	Plegadis falcinellus	CS1		
Australian White Ibis	Threskiornis molucca	001	X	
Straw-necked Ibis	Threskiornis spinicollis		~	
Yellow-billed Spoonbill	Platalea flavipes		X	
Accipitridae (kites, hawks				
Eastern Osprey	Pandion cristatus	CS1	X	X (1)
Black-shouldered Kite	Elanus notatus	001	X	
Whistling Kite	Haliastur sphenurus	CS3	X	
White-bellied Sea-Eagle	Haliaeetus leucogaster	000	^	
Swamp Harrier	Circus approximans			Х
Brown Goshawk	Accipiter fasciatus	CS3	· · · · · · · · · · · · · · · · · · ·	^
Collared Sparrowhawk	Accipiter Cirrhocephalus	CS3	X	
	Hieraaetus morphnoides	CS3	^	
Little Eagle		633		
Falconidae (falcons)	Falaa barizara	000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Brown Falcon	Falco berigora	CS3	X	
Peregrine Falcon	Falco peregrinus	CS1	v	
Australian Hobby	Falco longipennis		X	
Nankeen Kestrel	Falco cenchroides		X	

Species	Cons. Listing	Siemon 2000	2018
Rallidae (crakes and rails)			
Buff-banded Rail Rallus philippens	sis		Х
Baillon's Crake Porzana pusi			
Spotless Crake Porzana tabuens			
Australian Crake Porzana flumine			
Dusky Moorhen Gallinula tenebros		X	
Purple Swamphen Porphyrio porphyr		~~~~~	
Eurasian Coot Fulica at		X	
Scolopacidae (sandpipers)		~	
Common Greenshank Tringa nebular	ria CS1	Х	
Wood Sandpiper Tringa stagnati		^	
Common Sandpiper Tringa stagnati		Х	X (1)
Recurvirostridae (stilts and avocets)		^	A (1)
· · · · · · · · · · · · · · · · · · ·			
Black-winged Stilt Himantopus himantopu		X	
Red-necked Avocet Recurvirostra novaehollandia	ae	Х	
Charadriidae (lapwings and plovers)			
Grey Plover Pluvialis squataro			<u> </u>
Red-capped Plover Charadrius ruficapille			X
Black-fronted Dotterel Elseyornis melanop	ps		Х
Laridae (gulls and terns)			
Silver Gull Chroicocephalus novaehollandia	ae	Х	X (3)
Caspian Tern Sterna casp	oia	Х	
Crested Tern Thalasseus ber	gii CS1	Х	
Columbidae (pigeons and doves)	0		
Rock Pigeon Columbia liv	<i>ia</i> Int		
Spotted Dove Streptopelia chinens		Х	
Laughing Dove Streptopelia senegalens		X	
Cacatuidae (cockatoos)		~	
Forest Red-tailed Black Cockatoo Calyptorhynchus bank	sii CS1		
Carnaby's Black-Cockatoo Calyptorhynchus latirosti		Х	Х
Galah Cacatua roseicapi		^	^
1			
Eastern Long-billed Corella Cacatua tenuirosti			
Little Corella Cacatua sanguine			
Western Corella Cacatua pastinat	tor		
Psittacidae (lorikeets and parrots)			
Rainbow Lorikeet Trichoglossus haematod			
Red-capped Parrot Purpureicephalus spurie			
Australian Ringneck Barnardius zonarie	us	Х	
Cuculidae (cuckoos)			
Pallid Cuckoo Cuculus pallide	us		
Fan-tailed Cuckoo Cuculus pyrrhophani	us		
Horsfield's Bronze-Cuckoo Chrysococcyx basa			
Shining Bronze-Cuckoo Chrysococcyx lucida			
Strigidae (hawk-owls)			
Southern Boobook Owl Ninox novaeseelandia	ae		
Tytonidae (barn owls)			
Barn Owl Tyto alk	ha		
Podargidae (frogmouths)			
	00		
Tawny Frogmouth Podargus strigoide	5	┨────┤	
Apodidae (swifts)			
Fork-tailed Swift Apus pacific	us CS1	ļ	
Halcyonidae (forest kingfishers)			
Laughing Kookaburra Dacelo novaeguinea		X	
Sacred Kingfisher Todiramphus sancte	us	Х	
Meropidae (bee-eaters)			

Species		Cons. Listing	Siemon 2000	2018
Rainbow Bee-eater	Merops ornatus		Х	
Maluridae (fairy-wrens)				
Splendid Fairy-wren	Malurus splendens	CS3		
Pardalotidae (pardalotes)				
Spotted Pardalote	Pardalotus punctatus			
Striated Pardalote	Pardalotus striatus			
White-browed Scrubwren	Sericornis frontalis	CS3		
Western Gerygone	Gerygone fusca			Х
Weebill	Smicrornis brevirostris	CS3		
Inland Thornbill	Acanthiza apicalis	CS3	Х	
Yellow-rumped Thornbill	Acanthiza chrysorrhoa	CS3	Х	
Meliphagidae (honeyeaters)				
Red Wattlebird	Anthochaera carunculata		Х	
Western Wattlebird	Anthochaera lunulata	CS3		
Singing Honeyeater	Lichenostomus virescens		Х	Х
Brown Honeyeater	Lichmera indistincta		Х	
New Holland Honeyeater	Phylidonyris novaehollandiae	CS3		
White-cheeked Honeyeater	Phylidonyris nigra	CS3		Х
Pachycephalidae (whistlers)				
Rufous Whistler	Pachycephala rufiventris			
Dicruridae (flycatchers)				
Magpie-lark	Grallina cyanoleuca		Х	Х
Grey Fantail	Rhipidura fuliginosa		Х	
Willie Wagtail	Rhipidura leucophrys		Х	Х
Campephagidae (cuckoo-shrik				
Black-faced Cuckoo-shrike	Coracina novaehollandiae		Х	
White-winged Triller	Lalage sueurii			
Artamidae (woodswallows, mag				
Grey Butcherbird	Cracticus torquatus		Х	
Australian Magpie	Gymnorhina tibicen		Х	
Corvidae (ravens and crows)				
Australian Raven	Corvus coronoides		Х	
Motacillidae (pipits and true wa	gtails)			
Richard's (Australian) Pipit	Anthus novaeseelandiae		Х	
Dicaeidae (flowerpeckers)				
Mistletoebird	Diceum hirundinaceum		Х	Х
Hirundinidae (swallows)				
Welcome Swallow	Hirundo neoxena		X	Х
Tree Martin	Hirundo nigricans		X	
Sylviidae (old world warblers)				
Australian Reed-Warbler	Acrocephalus australis		X	
Little Grassbird	Megalurus gramineus		X	
Zosteropidae (white-eyes)				
Silvereye	Zosterops lateralis		X	

Table 5. Mammal species returned from desktop review. Species recorded by Siemon (2000) at Salter Point/Waterford are indicated. Those observed on 23/02/18 or later in 2018 (reported by Syrinx personnel) are indicated. (Conservation Listing: CS1 = listed under WA State and/or Commonwealth legislation; CS2 = listed as Priority by DBCA; CS3 = considered locally significant (including species listed by DEP 2000).

Latin Name	English Name	Cons Listing	Siemon 2000	2018
PERAMELIDAE				
Quenda (Bandicoot)	Isoodon fusciventer	CS2	Х	
PHALANGERIDAE				
Common Brushtail Possum	Trichosurus vulpecula	CS3		
MURIDAE				
Water-rat, Rakali	Hydromys chrysogaster	CS2		
House Mouse	Mus musculus	Int	Х	
Brown Rat	Rattus norvegicus			
Black Rat	Rattus rattus	Int	Х	
LEPORIDAE				
Rabbit	Oryctolagus cuniculus	Int		
MOLOSSIDAE				
White-striped Freetail Bat	Austronomus australis		Х	
VESPERTILIONIDAE				
Gould's Wattled Bat	Chalinolobus gouldii			
Lesser Long-eared Bat	Nyctophilus geoffroyi	CS3		
Southern Forest Bat	Vespadelus regulus			
CANIDAE				
Red Fox	Vulpes vulpes	Int	Х	
FELIDAE				
Cat	Felis catus	Int	Х	Х